A direct feedback flipped voltage follower (FVF) LDO for a high-precision frequency-modulated continuous-wave (FMCW) radar is presented. To minimize the effect of the power supply ripple on the FMCW radar sensor’s resolution, a folded cascode error amplifier (EA) was connected to the outer loop of the FVF to increase the open-loop gain. The direct feedback structure enhances the PSRR while minimizing the power supply ripple path and not compromising a transient response. The flipped voltage follower with a super source follower forms a fast feedback loop. The stability and parameter variation sensitivity of the multi-loop FVF LDO were analyzed through the state matrix decomposition. We implemented the FVF LDO in TSMC 65 nm CMOS technology. The fabricated FVF LDO supplied a maximum load current of 20 mA with a 1.2 V power supply. The proposed FVF LDO achieved a full-spectrum PSR with a low-frequency PSRR of 66 dB, unity-gain bandwidth of 469 MHz, and 20 ns transient settling time with a load current step from 1 mA to 20 mA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.