We report that the addition of alkali ions (sodium or potassium) to gold on KLTL-zeolite and mesoporous MCM-41 silica stabilizes mononuclear gold in Au-O(OH)x-(Na or K) ensembles. This single-site gold species is active for the low-temperature (<200°C) water-gas shift (WGS) reaction. Unexpectedly, gold is thus similar to platinum in creating -O linkages with more than eight alkali ions and establishing an active site on various supports. The intrinsic activity of the single-site gold species is the same on irreducible supports as on reducible ceria, iron oxide, and titania supports, apparently all sharing a common, similarly structured gold active site. This finding paves the way for using earth-abundant supports to disperse and stabilize precious metal atoms with alkali additives for the WGS and potentially other fuel-processing reactions.
While it has long been known that different types of support oxides have different capabilities to anchor metals and thus tailor the catalytic behavior, it is not always clear whether the support is a mere carrier of the active metal site, itself not participating directly in the reaction pathway. We report that catalytically similar single-atom-centric Pt sites are formed by binding to sodium ions through -O ligands, the ensemble being equally effective on supports as diverse as TiO2, L-zeolites, and mesoporous silica MCM-41. Loading of 0.5 wt % Pt on all of these supports preserves the Pt in atomic dispersion as Pt(II), and the Pt-O(OH)x- species catalyzes the water-gas shift reaction from ∼120 to 400 °C. Since the effect of the support is "indirect," these findings pave the way for the use of a variety of earth-abundant supports as carriers of atomically dispersed platinum for applications in catalytic fuel-gas processing.
A better
fundamental understanding of the plasma-catalyst interaction
and the reaction mechanism is vital for optimizing the design of catalysts
for ammonia synthesis by plasma-catalysis. In this work, we report
on a hybrid plasma-enhanced catalytic process for the synthesis of
ammonia directly from N2 and H2 over transition
metal catalysts (M/Al2O3, M = Fe, Ni, Cu) at
near room temperature (∼35 °C) and atmospheric pressure.
Reactions were conducted in a specially designed coaxial dielectric
barrier discharge (DBD) plasma reactor using water as a ground electrode,
which could cool and maintain the reaction at near-room temperature.
The transparency of the water electrode enabled operando optical diagnostics (intensified charge-coupled device (ICCD) imaging
and optical emission spectroscopy) of the full plasma discharge area
to be conducted without altering the operation of the reactor, as
is often needed when using coaxial reactors with opaque ground electrodes.
Compared to plasma synthesis of NH3 without a catalyst,
plasma-catalysis significantly enhanced the NH3 synthesis
rate and energy efficiency. The effect of different transition metal
catalysts on the physical properties of the discharge is negligible,
which suggests that the catalytic effects provided by the chemistry
of the catalyst surface are dominant over the physical effects of
the catalysts in the plasma-catalytic synthesis of ammonia. The highest
NH3 synthesis rate of 471 μmol g–1 h–1 was achieved using Ni/Al2O3 as a catalyst with plasma, which is 100% higher than that
obtained using plasma only. The presence of a transition metal (e.g.,
Ni) on the surface of Al2O3 provided a more
uniform plasma discharge than Al2O3 or plasma
only, and enhanced the mean electron energy. The mechanism of plasma-catalytic
ammonia synthesis has been investigated through operando plasma diagnostics combined with comprehensive characterization
of the catalysts using N2 physisorption measurements, X-ray
photoelectron spectroscopy (XPS), X-ray diffraction (XRD), high-resolution
transmission electron microscopy (HRTEM), NH3-temperature-programmed
desorption (TPD), and N2-TPD. Four forms of adsorbed NH
x
(x = 0, 1, 2, and 3) species
were detected on the surfaces of the spent catalysts using XPS. It
was found that metal sites and weak acid sites could enhance the production
of NH3 via formation of NH2 intermediates on
the surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.