Polymorphonuclear leukocytes (PMNs) are crucial for initial control of Streptococcus pneumoniae (pneumococcus) lung infection; however, as the infection progresses their persistence in the lungs becomes detrimental. Here we explored why the antimicrobial efficacy of PMNs declines over the course of infection. We found that the progressive inability of PMNs to control infection correlated with phenotypic differences characterized by a decrease in CD73 expression, an enzyme required for production of extracellular adenosine (EAD). EAD production by CD73 was crucial for the ability of both murine and human PMNs to kill S. pneumoniae. In exploring the mechanisms by which CD73 controlled PMN function, we found that CD73 mediated its antimicrobial activity by inhibiting IL‐10 production. PMNs from wild‐type mice did not increase IL‐10 production in response to S. pneumoniae; however, CD73−/− PMNs up‐regulated IL‐10 production upon pneumococcal infection in vitro and during lung challenge. IL‐10 inhibited the ability of WT PMNs to kill pneumococci. Conversely, blocking IL‐10 boosted the bactericidal activity of CD73−/− PMNs as well as host resistance of CD73−/− mice to pneumococcal pneumonia. CD73/IL‐10 did not affect apoptosis, bacterial uptake, and intracellular killing or production of antimicrobial neutrophil elastase and myeloperoxidase. Rather, inhibition of IL‐10 production by CD73 was important for optimal reactive oxygen species (ROS) production by PMNs. ROS contributed to PMN antimicrobial function as their removal or detoxification impaired the ability of PMNs to efficiently kill S. pneumoniae. This study demonstrates that CD73 controls PMN antimicrobial phenotype during S. pneumoniae infection.
PMNs are crucial for initial control of Streptococcus pneumoniae (pneumococcus) lung infection; however, as the infection progresses their persistence in the lungs becomes detrimental. Here we explored why the anti-microbial efficacy of PMNs declines over the course of infection. We found that the progressive inability of PMNs to control infection correlated with phenotypic differences characterized by a decrease in CD73 expression, an enzyme required for production of extracellular adenosine (EAD). EAD production by CD73 was crucial for the ability of both murine and human PMNs to kill S. pneumoniae. In exploring the mechanisms by which CD73 controlled PMN function, we found that CD73 mediated its anti-microbial activity by inhibiting IL-10 production. PMNs from wild type mice did not increase IL-10 production in response to S. pneumoniae, however, CD73-/- PMNs up-regulated IL-10 production upon pneumococcal infection in vitro and during lung challenge. IL-10 inhibited the ability of wild type PMNs to kill pneumococci. Conversely, blocking IL-10 boosted the bactericidal activity of CD73-/- PMNs as well as host resistance of CD73-/- mice to pneumococcal pneumonia. CD73/IL-10 did not affect apoptosis, bacterial uptake and intracellular killing or production of anti-microbial Neutrophil Elastase and Myeloperoxidase. Rather, inhibition of IL-10 production by CD73 was important for optimal ROS production by PMNs. ROS contributed to PMN anti-microbial function as their removal or detoxification impaired the ability of PMNs to efficiently kill S. pneumoniae. This study demonstrates that CD73 controls PMN anti-microbial phenotype during S. pneumoniae infection.
Extracellular adenosine production is crucial for host resistance against Streptococcus pneumoniae (pneumococcus) and is thought to affect antibacterial immune responses by neutrophils. However, whether extracellular adenosine alters direct hostpathogen interaction remains unexplored. An important determinant for lung infec-
Extracellular adenosine production is crucial for host resistance against Streptococcus pneumoniae (pneumococcus) and is thought to affect antibacterial immune responses by neutrophils. However, whether extracellular adenosine alters direct host–pathogen interaction remains unexplored. An important determinant for lung infection by S. pneumoniae is its ability to adhere to the pulmonary epithelium. Here we explored whether extracellular adenosine can directly impact bacterial adherence to lung epithelial cells. We found that signaling via A1 adenosine receptor significantly reduced the ability of pneumococci to bind human pulmonary epithelial cells. A1 receptor signaling blocked bacterial binding by reducing the expression of platelet‐activating factor receptor, a host protein used by S. pneumoniae to adhere to host cells. In vivo, A1 was required for control of pneumococcal pneumonia as inhibiting it resulted in increased host susceptibility. As S. pneumoniae remain a leading cause of community‐acquired pneumonia in the elderly, we explored the role of A1 in the age‐driven susceptibility to infection. We found no difference in A1 pulmonary expression in young versus old mice. Strikingly, triggering A1 signaling boosted host resistance of old mice to S. pneumoniae pulmonary infection. This study demonstrates a novel mechanism by which extracellular adenosine modulates resistance to lung infection by targeting bacterial–host interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.