We have studied the effect of the zwitterionic surface coating of quantum dots (QDs) on their interaction with a serum supplemented cell medium and their internalization by human cervical carcinoma (HeLa) cells. Zwitterionic QDs showed negligible adsorption of human serum albumin (HSA) selected as a model serum protein, in contrast to similar but negatively charged QDs. The incorporation of zwitterionic QDs by HeLa cells was found to be lower than for negatively charged QDs and for positively charged QDs, for which the uptake yield was largest. Our results suggest that the suppression of protein adsorption, here accomplished by zwitterionic QD surfaces, offers a strategy that allows for reducing the cellular uptake of nanoparticles.
The microbial diversity of Japanese- and Chinese-fermented soybean pastes was investigated using nested PCR-denaturing gradient gel electrophoresis (DGGE). Five Japanese-fermented soybean paste samples and three Chinese-fermented soybean paste samples were analyzed for bacteria and fungi. Extracted DNA was used as a template for PCR to amplify 16S rRNA and 18S rRNA genes. The nearly complete 16S rRNA and 18S rRNA genes were amplified using universal primers, and the resulting products were subsequently used as a template in a nested PCR to obtain suitable fragments for DGGE. Tetragenococcus halophilus and Staphylococcus gallinarum were found to dominate the bacterial microbiota in Japanese samples, whereas Bacillus sp. was detected as the predominant species in Chinese samples. DGGE analysis of fungi in soybean pastes determined the presence of Aspergillus oryzae and Zygosaccharomyces rouxii in most of the Chinese and Japanese samples. Some differences were observed in the bacterial diversity of Japanese- and Chinese-fermented soybean pastes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.