Background. Licorice (Glycyrrhiza spp. L.) is used as a natural sweetener and medicinal herb. Molecular studies have been conducted to find differences between wild and cultivated species because most wild species are highly resistant to abiotic and biotic stresses compared with their cultivated counterparts. However, few molecular markers have been developed for studying the genetic diversity and population structure of licorice species and to identify differences between cultivars. Thus, the present study aimed to develop a set of genomic simple sequence repeat (SSR) markers for molecular studies of these species. Methods. We designed 100 SSR markers based on the whole-genome sequence data of wild Glycyrrhiza lepidota and selected 62 SSR markers. Results. The genetic diversity analysis using these markers identified 2–23 alleles, and the major allele frequency, observed heterozygosity, genetic diversity, and polymorphism information content were 0.11–0.91, 0–0.90, 0.17–0.94, and 0.15–0.93, respectively. Interspecies transferability values were 93.5%, 91.6%, and 91.1% for G. echinata, G. glabra, and G. uralensis, respectively. Phylogenetic analysis clustered cultivated (group 1) and wild (group 2) species into three and two subgroups, respectively. The SSR markers developed here can be applied to genetic diversity, population structure, and cultivar differentiation studies, as well as to breeding of licorice varieties.
Background Licorice (Glycyrrhiza spp. L.) is used as a natural sweetener and medicinal herb in European and Asian countries. Molecular studies have been conducted to find differences between wild and cultivated species because most wild species are highly resistant to abiotic and biotic stresses compared with their cultivated species. However, few molecular markers have been developed for studying the genetic diversity and population structure of licorice species and to identify differences between cultivars. Thus, the present study aimed to develop a set of genomic simple sequence repeat (SSR) markers for molecular studies of these species. Methods In the present study, we developed polymorphic SSR markers based on whole-genomesequence data of Glycyrrhiza lepidota. Then, based on the sequence information, the polymorphic SSR markers were developed. The SSR markers were applied to 23 Glycyrrhiza individual plants. We also evaluated the phylogenetic relationships and interspecies transferability among samples. Results The genetic diversity analysis using these markers identified 2–23 alleles, and the major allele frequency, observed heterozygosity, genetic diversity, and polymorphism information content were 0.11–0.91, 0–0.90, 0.17–0.94, and 0.15–0.93, respectively. Interspecies transferability values were 93.5%, 91.6%, and 91.1% for G. echinata, G. glabra, and G. uralensis, respectively. Phylogenetic analysis clustered cultivated (group 1) and wild (group 2) species into three and two subgroups, respectively. The reported markers represent a valuable resource for the genetic characteri z ation of Glycyrrhiza spp. for theanalysis of its genetic variability, and as a tool for licorice transferability. This is the first intraspecific study in a collection of Glycyrrhiza spp. germplasm using SSR markers.
Agaricus bisporus is a popular edible mushroom that is cultivated worldwide. Due to its secondary homothallic nature, cultivated A. bisporus strains have low genetic diversity, and breeding novel strains is challenging. The aim of this study was to investigate the genetic diversity and population structure of globally collected A. bisporus strains using simple sequence repeat (SSR) markers. Agaricus bisporus strains were divided based on genetic distance-based groups and model-based subpopulations. The major allele frequency (MAF), number of genotypes (NG), number of alleles (NA), observed heterozygosity (HO), expected heterozygosity (HE), and polymorphic information content (PIC) were calculated, and genetic distance, population structure, genetic differentiation, and Hardy-Weinberg equilibrium (HWE) were assessed. Strains were divided into two groups by distance-based analysis and into three subpopulations by model-based analysis. Strains in subpopulations POP A and POP B were included in Group I, and strains in subpopulation POP C were included in Group II. Genetic differentiation between strains was 99%. Marker AB-gSSR-1057 in Group II and subpopulation POP C was confirmed to be in HWE. These results will enhance A. bisporus breeding programs and support the protection of genetic resources.
Background. Licorice (Glycyrrhiza spp. L.) is used as a natural sweetener and medicinal herb. Molecular studies have been conducted to find differences between wild and cultivated species because most wild species are highly resistant to abiotic and biotic stresses compared with their cultivated counterparts. However, few molecular markers have been developed for studying the genetic diversity and population structure of licorice species and to identify differences between cultivars. Thus, the present study aimed to develop a set of genomic simple sequence repeat (SSR) markers for molecular studies of these species. Methods. We designed 100 SSR markers based on the whole-genome sequence data of wild Glycyrrhiza lepidota and selected 62 SSR markers. Results. The genetic diversity analysis using these markers identified 2–23 alleles, and the major allele frequency, observed heterozygosity, genetic diversity, and polymorphism information content were 0.11–0.91, 0–0.90, 0.17–0.94, and 0.15–0.93, respectively. Interspecies transferability values were 93.5%, 91.6%, and 91.1% for G. echinata, G. glabra, and G. uralensis, respectively. Phylogenetic analysis clustered cultivated (group 1) and wild (group 2) species into three and two subgroups, respectively. The SSR markers developed here can be applied to genetic diversity, population structure, and cultivar differentiation studies, as well as to breeding of licorice varieties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.