Autonomous vehicles require highly reliable navigation capabilities. For example, a lane-following method cannot be applied in an intersection without lanes, and since typical lane detection is performed using a straight-line model, errors can occur when the lateral distance is estimated in curved sections due to a model mismatch. Therefore, this paper proposes a localization method that uses GPS/DR error estimation based on a lane detection method with curved lane models, stop line detection, and curve matching in order to improve the performance during waypoint following procedures. The advantage of using the proposed method is that position information can be provided for autonomous driving through intersections, in sections with sharp curves, and in curved sections following a straight section. The proposed method was applied in autonomous vehicles at an experimental site to evaluate its performance, and the results indicate that the positioning achieved accuracy at the sub-meter level.
Tall buildings are concentrated in urban areas. The outer walls of buildings are vertically erected to the ground and almost flat. Therefore, the vertical corners that meet the vertical planes are present everywhere in urban areas. These corners act as convenient landmarks, which can be extracted by using the light detection and ranging (LIDAR) sensor. A vertical corner feature based precise vehicle localization method is proposed in this paper and implemented using 3D LIDAR (Velodyne HDL-32E). The vehicle motion is predicted by accumulating the pose increment output from the iterative closest point (ICP) algorithm based on the geometric relations between the scan data of the 3D LIDAR. The vertical corner is extracted using the proposed corner extraction method. The vehicle position is then corrected by matching the prebuilt corner map with the extracted corner. The experiment was carried out in the Gangnam area of Seoul, South Korea. In the experimental results, the maximum horizontal position error is about 0.46 m and the 2D Root Mean Square (RMS) horizontal error is about 0.138 m.
An Extended Line Map (ELM)-based precise vehicle localization method is proposed in this paper, and is implemented using 3D Light Detection and Ranging (LIDAR). A binary occupancy grid map in which grids for road marking or vertical structures have a value of 1 and the rest have a value of 0 was created using the reflectivity and distance data of the 3D LIDAR. From the map, lines were detected using a Hough transform. After the detected lines were converted into the node and link forms, they were stored as a map. This map is called an extended line map, of which data size is extremely small (134 KB/km). The ELM-based localization is performed through correlation matching. The ELM is converted back into an occupancy grid map and matched to the map generated using the current 3D LIDAR. In this instance, a Fast Fourier Transform (FFT) was applied as the correlation matching method, and the matching time was approximately 78 ms (based on MATLAB). The experiment was carried out in the Gangnam area of Seoul, South Korea. The traveling distance was approximately 4.2 km, and the maximum traveling speed was approximately 80 km/h. As a result of localization, the root mean square (RMS) position errors for the lateral and longitudinal directions were 0.136 m and 0.223 m, respectively.
For autonomous driving, a control system that supports precise road maps is required to monitor the operation status of autonomous vehicles in the research stage. Such a system is also required for research related to automobile engineering, sensors, and artificial intelligence. The design of Google Maps and other map services is limited to the provision of map support at 20 levels of high-resolution precision. An ideal map should include information on roads, autonomous vehicles, and Internet of Things (IOT) facilities that support autonomous driving. The aim of this study was to design a map suitable for the control of autonomous vehicles in Gyeonggi Province in Korea. This work was part of the project “Building a Testbed for Pilot Operations of Autonomous Vehicles”. The map design scheme was redesigned for an autonomous vehicle control system based on the “Easy Map” developed by the National Geography Center, which provides free design schema. In addition, a vector-based precision map, including roads, sidewalks, and road markings, was produced to provide content suitable for 20 levels. A hybrid map that combines the vector layer of the road and an unmanned aerial vehicle (UAV) orthographic map was designed to facilitate vehicle identification. A control system that can display vehicle and sensor information based on the designed map was developed, and an environment to monitor the operation of autonomous vehicles was established. Finally, the high-precision map was verified through an accuracy test and driving data from autonomous vehicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.