Allosteric regulation of organometallic catalysts could allow for greater control over reactions. We report an allosteric supramolecular structure in which a monometallic catalytic site has been buried in the middle layer of a triple-layer complex. Small molecules and elemental anions can open and close this complex and reversibly expose and conceal the catalytic center. The ring-opening polymerization of ε-caprolactone can be turned on by the in situ opening of the triple-layer complex and then completely turned off by reforming it through the abstraction of Cl(-), the allosteric effector agent, without appreciable loss of catalytic activity. This process can regulate the molecular weights of the resulting polymers.
Poly(ADP-ribose) polymerases (PARPs) catalyze the transfer of multiple adenine diphosphate ribose (ADP-ribose) units from nicotinamide adenine dinucleotide (NAD) to substrate proteins. There are seventeen PARPs in humans. Several PARPs, such as PARP-1 and Tankyrase-1, are known to play important roles in DNA repair, transcription, mitosis, and telomere length maintenance. To better understand the functions of PARPs at a molecular level, it is necessary to know what substrate proteins PARPs modify. Here we report clickable NAD analogs that can be used to label PARP substrate proteins. The clickable NAD analogs have a terminal alkyne group which allows the conjugation of fluorescent or affinity tags to the substrate proteins. Using this method, PARP-1 and tankyrase-1 substrate proteins were labeled by a fluorescent tag and visualized on SDS-PAGE gel. Using a biotin affinity tag, we were able to isolate and identify a total of 79 proteins were identified as potential PARP-1 substrates. These include known PARP-1 substrate proteins, including histones and heterogeneous nuclear ribonucleoproteins. About 40% of the proteins were also identified in recent proteomic studies as potential PARP-1 substrates. Among the identified potential substrates, we further demonstrated that tubulin and three mitochondrial proteins, TRAP1 (TNF receptor-associated protein 1), citrate synthase, and GDH (glutamate dehydrogenase 1), are substrates of PARP-1 in vitro. These results demonstrate that the clickable NAD analog is useful for labeling, in-gel detection, isolation, and identification of the substrate proteins of PARPs and will help to understand the biological functions of PARPs.
This article describes the structural and optical properties of a new class of hybrid nanoparticles that consists of a small gold core (∼60 nm in diameter) coated with a biocompatible hydrogel polymer shell varying from ∼20 to ∼90 nm in thickness. These nanoparticles are being developed to serve as unique drug-delivery vehicles that have the ability to respond to ambient changes in pH and/or temperature. A particularly attractive feature of these nanoparticles derives from the fact that the hydrogel can be thermally activated by exposure to light via exploitation of the strong plasmon absorption of the gold nanoparticle core. The hydrogel coating consists of a known biocompatible thermo-responsive copolymer derived from the radical polymerization of a selected mixture of N-isoproprylacrylamide and acrylic acid. The morphology and elemental composition of the composite nanoparticles were characterized by field emission scanning electron microscopy and energy-dispersive X-ray scattering, respectively. The optical properties of the nanoparticles were analyzed by UV spectroscopy, and the average particle size was evaluated as a function of temperature and/or pH using dynamic light scattering. The results demonstrate not only that these new hybrid nanoparticles can be reliably prepared through the surfactant-free emulsion polymerization but also that their responses to external stimuli are completely consistent with the targeted drug-delivery objectives.
This report describes the structural and optical properties of a series of spherical shell/core nanoparticles in which the shell is comprised of a thin layer of gold, silver, or gold-silver alloy, and the core is comprised of a monodispersed silica nanoparticle. The silica core particles were prepared using the Stöber method, functionalized with terminal amine groups, and then seeded with small gold nanoparticles (approximately 2 nm in diameter). The gold-seeded silica particles were coated with a layer of gold, silver, or gold-silver alloy via solution-phase reduction of an appropriate metal ion or mixture of metal ions. The size, morphology, and elemental composition of the composite nanoparticles were characterized by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, thermal gravimetric analysis (TGA), dynamic light scattering (DLS), and transmission electron microscopy (TEM). The optical properties of the nanoparticles were analyzed by UV-vis spectroscopy, which showed strong absorptions ranging from 400 nm into the near-IR region, where the position of the plasmon band reflected not only the thickness of the metal shell, but also the nature of the metal comprising the shell. Importantly, the results demonstrate a new strategy for tuning the position of the plasmon resonance without having to vary the core diameter or the shell thickness.
Hollow gold-silver nanoshells having systematically varying sizes between 40 and 100 nm were prepared. These particles consist of a hollow spherical silver shell surrounded by a thin gold layer. By varying the volume of the gold stock solution added to suspensions of small silver-core templates, we tailored the hollow gold-silver nanoshells to possess strong tunable optical extinctions that range from the visible to the near-IR spectral regions, with extinctions routinely centered at ∼950 nm. The size and morphology of these core/shell nanoparticles were characterized by dynamic light scattering (DLS), field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). Separately, X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) were used for measuring their elemental composition; UV-vis spectroscopy was used to evaluate their optical properties. Given their relatively small size compared to other nanoparticles that absorb strongly at near IR wavelengths, these easy-to-synthesize particles should find use in applications that require ultrasmall nanoparticles with extinctions comfortably beyond visible wavelengths (e.g., medicinal therapies, diagnostic imaging, nanofluidics, and display technologies).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.