Nitric oxide (NO) is a small, diffusible, lipophilic free radical gas that mediates significant and diverse signaling functions in nearly every organ system in the body. The endothelial isoform of nitric oxide synthase (eNOS) is a key source of NO found in the cardiovascular system. This review summarizes the pharmacology of NO and the cellular regulation of endothelial NOS (eNOS). The molecular intricacies of the chemistry of NO and the enzymology of NOSs are discussed, followed by a review of the biological activities of NO. This information is then used to develop a more global picture of the pharmacological control of NO synthesis by NOSs in both physiologic conditions and pathophysiologic states.
Sphingosine 1-phosphate (S1P) is a platelet-derived sphingolipid that binds to S1P 1 (EDG-1) receptors and activates the endothelial isoform of NO synthase (eNOS). S1P and the polypeptide growth factor vascular endothelial growth factor (VEGF) act independently to modulate angiogenesis and activate eNOS. In these studies, we explored the cross-talk between S1P and VEGF signaling pathways. When cultured bovine aortic endothelial cells were treated with VEGF (10 ng͞ml), the expression of S1P 1 protein and mRNA increased by Ϸ4-fold. S1P1 up-regulation by VEGF was seen within 30 min of VEGF addition and reached a maximum after 1.5 h. By contrast, expression of neither bradykinin B2 receptors nor the scaffolding protein caveolin-1 was altered by VEGF treatment. The EC 50 for VEGF-promoted induction of S1P 1 expression was Ϸ2 ng͞ml, within its physiological concentration range. S1P1 induction by VEGF was attenuated by the tyrosine kinase inhibitor genistein and by the PKC inhibitor calphostin C. Preincubation of bovine aortic endothelial cells with VEGF (10 ng͞ml for 90 min) markedly enhanced subsequent S1P-dependent eNOS activation. VEGF pretreatment of cultured endothelial cells also markedly potentiated S1P-promoted eNOS phosphorylation at Ser-1179, as well as S1P-mediated activation of kinase Akt. In isolated rat arteries, VEGF pretreatment markedly potentiated S1P-mediated vasorelaxation and eNOS Ser-1179 phosphorylation. Taken together, these data indicate that VEGF specifically induces expression of S1P 1 receptors, associated with enhanced intracellular signaling responses to S1P and the potentiation of S1P-mediated vasorelaxation. We suggest that VEGF acts to sensitize the vascular endothelium to the effects of lipid mediators by promoting the induction of S1P 1 receptors, representing a potentially important point of cross-talk between receptor-regulated eNOS signaling pathways in the vasculature.
Crystal structures are reported for the endothelial nitric oxide synthase (eNOS)-arginine-CO ternary complex as well as the neuronal nitric oxide synthase (nNOS) heme domain complexed with L: -arginine and diatomic ligands, CO or NO, in the presence of the native cofactor, tetrahydrobiopterin, or its oxidized analogs, dihydrobiopterin and 4-aminobiopterin. The nature of the biopterin has no influence on the diatomic ligand binding. The binding geometries of diatomic ligands to nitric oxide synthase (NOS) follow the {MXY}(n) formalism developed from the inorganic diatomic-metal complexes. The structures reveal some subtle structural differences between eNOS and nNOS when CO is bound to the heme which correlate well with the differences in CO stretching frequencies observed by resonance Raman techniques. The detailed hydrogen-bonding geometries depicted in the active site of nNOS structures indicate that it is the ordered active-site water molecule rather than the substrate itself that would most likely serve as a direct proton donor to the diatomic ligands (CO, NO, as well as O(2)) bound to the heme. This has important implications for the oxygen activation mechanism critical to NOS catalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.