Alzheimer's disease (AD) is characterized by the accumulation of fibrillar amyloid-beta (Abeta) peptides to form amyloid plaques. Understanding the balance of production and clearance of Abeta peptides is the key to elucidating amyloid plaque homeostasis. Microglia in the brain, associated with senile plaques, are likely to play a major role in maintaining this balance. Here, we show that heat-shock proteins (HSPs), such as HSP90, HSP70, and HSP32, induce the production of interleukin 6 and tumor necrosis factor alpha and increase the phagocytosis and clearance of Abeta peptides. This suggests that microglial interaction with Abeta peptides is highly regulated by HSPs. The mechanism of microglial activation by exogenous HSPs involves the nuclear factor kB and p38 mitogen-activated protein kinase pathways mediated by Toll-like receptor 4 activation. In AD brains, levels of HSP90 were increased in both the cytosolic and membranous fractions, and HSP90 was colocalized with amyloid plaques. These observations suggest that HSP-induced microglial activation may serve a neuroprotective role by facilitating Abeta clearance and cytokine production
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.