Within tumours, many non-neoplastic cells such as fibroblasts, endothelial cells, and macrophages assist tumour growth by producing various growth factors and pro-angiogenic cytokines. Various tumour-derived molecules drive tumour-associated macrophages towards an anti-inflammatory phenotype (M2) and thus promoting tumour growth. Here we investigated microglia/macrophage differentiation in glioma tissues by means of immunostaining of paraffin-embedded glioma samples. The number of microglia/macrophages with positive staining for CD163 and CD204, which are believed to be markers for M2 macrophages, was correlated with the histological grade of the gliomas. The ratio of M2 macrophages in the tumour-associated microglia/macrophages was also associated with the histological grade. Culture supernatant from the glioma cell line can stimulate macrophages to develop into the M2 phenotype in vitro. Macrophage colony-stimulating factor (M-CSF), which strongly induces M2 polarization of macrophages, was significantly correlated with histological malignancy and with the proportion of M2 microglia/macrophages in vivo. In addition, the proportion of M2 microglia/macrophages and M-CSF expression in tumour cells correlated well with proliferation of glioblastoma cells. These results suggest that tumour-derived M-CSF induces a shift of microglia/macrophages towards the M2 phenotype, which influences tumour growth. Evaluation of the proportion of M2 microglia/macrophages and M-CSF expression in tumour tissue would be useful for assessment of microglia/macrophage proliferative activity and the prognosis of patients with gliomas.
Dystonia is a neurological syndrome characterized by sustained muscle contractions that produce repetitive twisting movements or abnormal postures. X-linked recessive dystonia parkinsonism (XDP; DYT3; Lubag) is an adult-onset disorder that manifests severe and progressive dystonia with a high frequency of generalization. In search for the anatomical basis for dystonia, we performed postmortem analyses of the functional anatomy of the basal ganglia based on the striatal compartments (ie, the striosomes and the matrix compartment) in XDP. Here, we provide anatomopathological evidence that, in the XDP neostriatum, the matrix compartment is relatively spared in a unique fashion, whereas the striosomes are severely depleted. We also document that there is a differential loss of striatal neuron subclasses in XDP. In view of the three-pathway basal ganglia model, we postulate that the disproportionate involvement of neostriatal compartments and their efferent projections may underlie the manifestation of dystonia in patients with XDP. This study is the first to our knowledge to show specific basal ganglia pathology that could explain the genesis of dystonia in human heredodegenerative movement disorders, suggesting that dystonia may result from an imbalance in the activity between the striosomal and matrix-based pathways.
Recent findings have shown that malignant tumors contain cancer-initiating cells (CIC), which self-renew and are tumorigenic. However, CICs have not been characterized properly due to lack of specific markers. We recently established a mouse glioma cell line, NSCL61, by overexpressing an oncogenic HRas L61 in p53-deficient neural stem cells. Using limiting dilution assays, we show that only 2 of 24 NSCL61 clones retained their tumorigenicity in vivo, although the others also expressed oncogenic HRas L61 and could proliferate in culture. A comparison of the gene expression profiles of tumorigenic and nontumorigenic clones showed that the tumorigenic clones had lost Sox11 expression. We show that overexpression of sox11 prevented tumorigenesis of NSCL61s by inducing their neuronal differentiation accompanied with decreased levels of plagl1. We also show that overexpression of plagl1 abolished neuronal commitment of nontumorigenic cells and induced them to become tumorigenic. Moreover, we show that human glioma-initiating cells lost sox11 expression, and overexpression of sox11 prevented their tumorigenesis in vivo. Together with the clinical evidence showing that downregulation of sox11 mRNA correlates with a significant decrease in survival, these findings suggest that Sox11 prevents gliomagenesis by blocking the expression of oncogenic plagl1. [Cancer Res 2009;69(20):7953-9]
Using a combination of minimum ADCs and ADC difference values (the two-parameter method) facilitates the accurate grading of astrocytic tumors.
Among patients older than age 70 years who underwent operation for asymptomatic meningioma, the neurological morbidity rate was 23.3%; it was 3.5% among younger patients. This indicates that the advisability of surgery in elderly patients with asymptomatic meningiomas must be considered very carefully.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.