Glutathione levels in neurons and glial cells were investigated in a neuronal-glial coculture and in separate cultures. Brain cell suspensions obtained from cerebral hemispheres of fetal rats were cultured, and after 5 days the glutathione content of this cell population, consisting mainly of neurons and astroglial cells, was 23.0 nmol/mg of cell protein, with a significantly high content in glial cells (28.0 nmol/mg of protein) in comparison with neurons (18.8 nmol/mg of protein). When the neurons and glial cells were separated and recultured in fresh medium, neuronal glutathione rapidly decreased, whereas glial glutathione remained unchanged. Cysteine is a rate-limiting precursor for glutathione synthesis, and its level was also decreased in neurons, but not in glial cells. Cysteine was taken up rapidly by both neurons and glial cells, but cystine was taken up only by glial cells. This accounts for the rapid decrease of glutathione in the cultured neurons, because the culture medium contains cystine, but not cysteine. It was also found that the cultured glial cells released cysteine into the medium. These results suggest that neurons maintain their glutathione level by taking up cysteine provided by glial cells.
The characteristics and kinetics of GSH efflux from the monolayer culture of rat astrocytes were investigated. GSH efflux was dependent on temperature, with a Q 10 value of 2.0 between 37 and 25°C.The GSH efflux rate showed a hyperbolic dependency on the intracellular GSH concentration. The data were fitted well to the Michaelis-Menten model, giving the following kinetic parameter values: Km = 127 nmol/mg of protein; Vmax = 0.39 nmol/min/mg of protein. p-Chloromercuribenzenesulfonic acid, a thiol-reactive agent impermeable to the cell membrane, lowered the GSH efflux rate by 25% without affecting the intracellular GSH content. These results suggest that a carrier is involved in the efflux of GSH. The GSH content of cultured astrocytes showed a marked increase when the cells were exposed to insults, such as sodium arsenite, cadmium chloride, and glucose/glucose oxidase that lead to the generation of hydrogen peroxide. The increase in GSH content was attributed to the induction of the cystine transport activity by the agents. Although the intracellular GSH concentration and GSH efflux were increased, the kinetics of GSH efflux were not affected by those agents that imposed the oxidative stress. Because the Km value is very large, it is suggested that astrocytes release GSH depending on their GSH concentration in a wide range.
The transport of cystine has been investigated in mouse peritoneal macrophages cultured in vitro. The transport activity for cystine was very low in freshly isolated macrophages but was potently induced during culture in the presence of bacterial lipopolysaccharide (LPS) at concentrations as low as 0.1 ng/ml. The transport activity for cystine was enhanced when the cells were incubated with tumour necrosis factor-alpha (TNF-alpha), but not with interferon-gamma (IFN-gamma) or interleukin-1. IFN-gamma was rather repressive in the induction of the activity by LPS or TNF-alpha. The transport activity for cystine induced by LPS has been characterized. Cystine was transported mainly by Na(+)-independent system and the uptake of cystine was inhibited by extracellular glutamate and homocysteate, but not by aspartate, indicating that the transport of cystine in macrophages treated with LPS is mediated by System xc-. Glutathione content of the macrophages increased when they were exposed to LPS, and this increase was, at least in part, attributable to the induced activity of the cystine transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.