The Ward linkage method in agglomerative hierarchical clustering is sometimes used for non-Euclidean similarity, i.e., non-positive definite matrix of similarity, which is not an adequate use of this method, since the square Euclidean distance should be its basis. Nevertheless, this paper shows that the Ward method for non positive-definite similarity can partly be justified. It is shown that the result from the Ward method to a non positive-definite and normalized similarity is almost the same as another result from the Ward method to a positive-definite matrix obtained from the original similarity by adding a positive constant to the diagonal elements. More precisely, the same clusters are generated by the same order from the both data. Only the levels of their generations are different.
Background Some organic chemicals are known to cause allergic disorders such as bronchial asthma and hypersensitivity pneumonitis, and it has been considered that they do not cause irreversible pulmonary fibrosis. It has recently been reported, however, that cross-linked acrylic acid-based polymer, an organic chemical, might cause serious interstitial lung diseases, including pulmonary fibrosis. We investigated whether or not intratracheal instillation exposure to cross-linked polyacrylic acid (CL-PAA) can cause lung disorder in rats. Methods Male F344 rats were intratracheally instilled with dispersed CL-PAA at low (0.2 mg/rat) and high (1.0 mg/rat) doses, and were sacrificed at 3 days, 1 week, 1 month, 3 months and 6 months after exposure to examine inflammatory and fibrotic responses and related gene expressions in the lungs. Rat lungs exposed to crystalline silica, asbestos (chrysotile), and NiO and CeO2 nanoparticles were used as comparators. Results Persistent increases in total cell count, neutrophil count and neutrophil percentage, and in the concentration of the cytokine-induced neutrophil chemoattractant (CINC)-1, CINC-2 and C-X-C motif chemokine 5 (CXCL5), which correlated with lung tissue gene expression, were observed in bronchoalveolar lavage fluid (BALF) from 3 days until at least 1 month following CL-PAA intratracheal instillation. Persistent increases in heme oxygenase-1 (HO-1) in the lung tissue were also observed from 3 days to 6 months after exposure. Histopathological findings of the lungs demonstrated that extensive inflammation at 3 days was greater than that in exposure to silica, NiO nanoparticles and CeO2 nanoparticles, and equal to or greater than that in asbestos (chrysotile) exposure, and the inflammation continued until 1 month. Fibrotic changes also progressed after 1 month postexposure. Conclusion Our results suggested that CL-PAA potentially causes strong neutrophil inflammation in the rat and human lung.
We analyzed the mRNA expression of chemokines in rat lungs following intratracheal instillation of nanomaterials in order to find useful predictive markers of the pulmonary toxicity of nanomaterials. Nickel oxide (NiO) and cerium dioxide (CeO2) as nanomaterials with high pulmonary toxicity, and titanium dioxide (TiO2) and zinc oxide (ZnO) as nanomaterials with low pulmonary toxicity, were administered into rat lungs (0.8 or 4 mg/kg BW). C-X-C motif chemokine 5 (CXCL5), C-C motif chemokine 2 (CCL2), C-C motif chemokine 7 (CCL7), C-X-C motif chemokine 10 (CXCL10), and C-X-C motif chemokine 11 (CXCL11) were selected using cDNA microarray analysis at one month after instillation of NiO in the high dose group. The mRNA expression of these five genes were evaluated while using real-time quantitative polymerase chain reaction (RT-qPCR) from three days to six months after intratracheal instillation. The receiver operating characteristic (ROC) results showed a considerable relationship between the pulmonary toxicity ranking of nanomaterials and the expression of CXCL5, CCL2, and CCL7 at one week and one month. The expression levels of these three genes also moderately or strongly correlated with inflammation in the lung tissues. Three chemokine genes can be useful as predictive biomarkers for the ranking of the pulmonary toxicity of nanomaterials.
In this study, we quantitatively assessed the effectiveness of systems for COVID-19 testing in small groups of sport teams that are semi-isolated from the general population by countermeasures against infection. Two types of group were assumed, and the dynamics of infection within each group was modeled by using a compartment model of infectious disease. One group (Group A) comprised domestic professional sports teams that play many games over a season while remaining within a relatively small region. Polymerase chain reaction (PCR) tests were routinely conducted once every 2 weeks, and the number of infected individuals that could not be quarantined after identification by testing or checking for symptoms was defined as the risk. The other group (Group B) comprised teams that travel across borders for mass-gathering events like the Olympic and Paralympic Games. The teams were isolated for 2 weeks at their destination; frequent testing and checking for symptoms was conducted, and any infected individuals were quarantined. The number of infected individuals participating in games after the isolation period was defined as the risk. In Group A, the number of infected individuals detected by routinely conducted PCR testing was lower than the number of infected individuals detected by checking for symptoms, indicating that routine testing every 2 weeks was not very effective. In Group B, daily PCR testing was the most effective, followed by daily antigen testing. Dual testing, in which individuals with a positive antigen test were given an additional PCR test, was the least effective with an effect equal to PCR testing every other day. These results indicate that repeated testing does not necessarily increase the detection of infected individuals.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.