Comprehensive geological surveys have revealed the physiographical and sedimentological characteristics of the Kushiro Submarine Canyon, one of the largest submarine canyons around Japan. The canyon indents the outer shelf along a generally straight, deeply excavated course of more than 230 km in length upon the active forearc slope of the Kuril Trench in the Northwest Pacifi c. The forearc slope has a convex-upward geometry that can be divided into upper and lower parts separated by an outer-arc high (3200-3500 m water depth). The upper slope consists of gently folded forearc sediments, and the lower slope is underlain by sedimentary rocks deformed by subduction-related processes. The upper reaches of the canyon (~3250 m of thalweg water depth) are developed on the upper slope, showing a weakly concave-upward longitudinal profi le with a gradual down-canyon increase in relief between the thalweg and the canyon rim. Although an infi ll of hemipelagic mud and the absence of turbidite deposits indicates that the upper part of the upper reaches of the canyon (~900 m thalweg water depth) is inactive, the lower part of the upper reaches (900-3250 m thalweg water depth) is considered to be an active conduit to the lower reaches, as determined from voluminous turbidites recovered in sediment cores (~76-yr intervals) and rockfalls observed in the canyon bottom by deep-sea camera. A number of gullies developed upon the northern slope of the lower part of the upper reaches might well provide a frequent supply of turbidity currents, giving rise to a down-canyon increase in the frequency of fl ow events. The down-canyon increase in fl ow occurrence is related to a gradual decrease in gradient, demonstrating an inverse power-law relationship between slope and drainage area. In contrast, the lower reaches of the canyon (3250-7000 m thalweg water depth) are characterized by a gradual decrease in relief, a high gradient, and extremely low sinuosity. The limited increase in drainage area down-canyon of the confl uence with the Hiroo Submarine Channel, which is the largest tributary of the main canyon, indicates that the erosional force of turbidity currents decreases down-canyon. The gradient of the lower reaches largely refl ects the morphology of the forearc slope along the canyon, which has been deformed by subduction-related tectonics. The lack of an inverse power-law relationship between gradient and drainage area in the lower canyon supports the hypothesis that the topography of the lower reaches is dominated by subduction-related tectonic deformation of the substrate rather than canyon erosion. Interrelationships between canyon erosion by currents and tectonic processes along the forearc slope are important in the development of the physiography of submarine canyons upon active forearc margins.
Foraminiferal tests are commonly found in tsunami deposits and provide evidence of transport of sea floor sediments, sometimes from source areas more than 100 m deep and several kilometers away. These data contribute to estimates of the physical properties of tsunami waves, such as their amplitude and period. The tractive force of tsunami waves is inversely proportional to the water depth at sediment source areas, whereas the horizontal sediment transport distance by tsunami waves is proportional to the wave period and amplitude. We derived formulas for the amplitudes and periods of tsunami waves as functions of water depth at the sediment source area and sediment transport distance based on foraminiferal assemblages in tsunami deposits. We applied these formulas to derive wave amplitudes and periods from data on tsunami deposits in previous studies. For some examples, estimated wave parameters were reasonable matches for the actual tsunamis, although other cases had improbably large values. Such inconsistencies probably reflect: (i) local amplification of tsunami waves by submarine topography, such as submarine canyons; and (ii) errors in estimated water depth at the sediment source area and sediment transport distance, which mainly derive from insufficient identification of foraminiferal tests.
A flight of Holocene marine terraces on the southwestern coast of Cape Omaezaki of central Japan provides evidence of recurrent millennium-scale uplift events. We reconstructed the uplift history of these terraces by using facies analysis of drill core and geoslicer samples, environmental analysis of trace fossils, and 14 C age determinations. Coastal uplift can be identified by the displacement of beach deposits such as foreshore deposits, which represent the intertidal swash zone of a wave-dominated sandy coast. Three levels of former beach deposits facing the Nankai Trough were identified near the coast in the Omaezaki area. The highest of these, dated at about 3020-2880 BC, records a maximum of 2.2-2.7 m of emergence. The middle beach surface, of minimum age 370-190 BC, shows 1.6-2.8 m of emergence. The lowest beach surface, which is older than 1300-1370 AD, records 0.4-1.6 m of emergence. Our analysis of vertical crustal deformation data during the Holocene in this region suggests that rapid and strong uplift was restricted to the southwestern coast of the Omaezaki area and was probably caused by high-angle thrusting on subsidiary faults branching from the underlying plate boundary megathrust.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.