We report the first pyrochlore oxide superconductor Cd 2 Re 2 O 7 . Resistivity, magnetic susceptibility, and specific heat measurements on single crystals evidence a bulk superconductivity at 1 K. Another phase transition found at 200 K suggests that a peculiar electronic structure lies behind the superconductivity.
High-temperature (high-T c ) superconductivity appears as a consequence of the carrier-doping of an undoped parent compound exhibiting antiferromagnetic order; thereby, ground-state properties of the parent compound are closely relevant to the superconducting state 1,2 . On the basis of the concept, a spin-fluctuation has been addressed as an origin of pairing of the superconducting electrons in cuprates 1 . Whereas, there is growing interest in the pairing mechanism such as an unconventional spin-fluctuation or an advanced orbital-fluctuation due to the characteristic multi-orbital system in iron-pnictides 3-6 . Here, we report the discovery of an antiferromagnetic order as well as a unique structural transition in electron-overdoped
We have synthesized high-quality single crystals of volborthite, a seemingly distorted kagome antiferromagnet, and carried out high-field magnetization measurements up to 74 T and ^{51}V NMR measurements up to 30 T. An extremely wide 1/3 magnetization plateau appears above 28 T and continues over 74 T at 1.4 K, which has not been observed in previous studies using polycrystalline samples. NMR spectra reveal an incommensurate order (most likely a spin-density wave order) below 22 T and a simple spin structure in the plateau phase. Moreover, a novel intermediate phase is found between 23 and 26 T, where the magnetization varies linearly with magnetic field and the NMR spectra indicate an inhomogeneous distribution of the internal magnetic field. This sequence of phases in volborthite bears a striking similarity to those of frustrated spin chains with a ferromagnetic nearest-neighbor coupling J_{1} competing with an antiferromagnetic next-nearest-neighbor coupling J_{2}.
Single crystals of CoV(2)O(6) were obtained in a closed crucible using a flux method. Magnetic measurements showed that this material displays a large magnetic anisotropy and a 1/3 magnetization plateau under a magnetic field applied along the c axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.