We developed a DNA sequencing-based method to detect mutations in the genome of drug-resistant Mycobacterium tuberculosis. Drug resistance in M. tuberculosis is caused by mutations in restricted regions of the genome. Eight genome regions associated with drug resistance, including rpoB for rifampin (RIF), katG and the mabA (fabG1)-inhA promoter for isoniazid (INH), embB for ethambutol (EMB), pncA for pyrazinamide (PZA), rpsL and rrs for streptomycin (STR), and gyrA for levofloxacin, were amplified simultaneously by PCR, and the DNA sequences were determined. It took 6.5 h to complete all procedures. Among the 138 clinical isolates tested, 55 were resistant to at least one drug. Thirty-four of 38 INH-resistant isolates (89.5%), 28 of 28 RIF-resistant isolates (100%), 15 of 18 EMB-resistant isolates (83.3%), 18 of 30 STR-resistant isolates (60%), and 17 of 17 PZA-resistant isolates (100%) had mutations related to specific drug resistance. Eighteen of these mutations had not been reported previously. These novel mutations include one in rpoB, eight in katG, one in the mabA-inhA regulatory region, two in embB, five in pncA, and one in rrs. Escherichia coli isolates expressing individually five of the eight katG mutations showed loss of catalase and INH oxidation activities, and isolates carrying any of the five pncA mutations showed no pyrazinamidase activity, indicating that these mutations are associated with INH and PZA resistance, respectively. Our sequencing-based method was also useful for testing sputa from tuberculosis patients and for screening of mutations in Mycobacterium bovis. In conclusion, our new method is useful for rapid detection of multiple-drug-resistant M. tuberculosis and for identifying novel mutations in drug-resistant M. tuberculosis.The emergence and spread of drug-resistant strains of Mycobacterium tuberculosis, especially multidrug-resistant (MDR) strains, are serious threats to the control of tuberculosis and comprise an increasing public health problem (40). Patients infected with MDR strains, which are defined as strains resistant to both rifampin (RIF) and isoniazid (INH), are difficult to cure and are more likely to remain sources of infection for a longer period of time than are patients with drug-susceptible strains (40).It is essential that rapid drug susceptibility tests be developed to prevent the spread of MDR M. tuberculosis. The time necessary for culture of specimens was reduced by the radiometric BACTEC 460TB system (BD Biosciences, Sparks, MD), the nonradiometric ESP II system (Trek Diagnostics, Westlake, OH), and other rapid broth methods, such as BACTEC MGIT 960 SIRE (BD Biosciences) (20). These drug susceptibility tests, however, still require 1 to 2 weeks for final determination and reporting to the clinician (23). Additional reductions in the detection period are needed.Drug resistance in M. tuberculosis is caused by mutations in relatively restricted regions of the genome (17, 39). Mutations associated with drug resistance occur in rpoB for RIF, katG and the promote...
Approximately one-third of the world's population carries Staphylococcus aureus. The recent emergence of extreme drug resistant strains that are resistant to the "antibiotic of last resort", vancomycin, has caused a further increase in the pressing need to discover new drugs against this organism. The S. aureus enoyl reductase, saFabI, is a validated target for drug discovery. To drive the development of potent and selective saFabI inhibitors, we have studied the mechanism of the enzyme and analyzed the interaction of saFabI with triclosan and two related diphenyl ether inhibitors. Results from kinetic assays reveal that saFabI is NADPH-dependent, and prefers acyl carrier protein substrates carrying fatty acids with long acyl chains. On the basis of product inhibition studies, we propose that the reaction proceeds via an ordered sequential ternary complex, with the ACP substrate binding first, followed by NADPH. The interaction of NADPH with the enzyme has been further explored by site-directed mutagenesis, and residues R40 and K41 have been shown to be involved in determining the specificity of the enzyme for NADPH compared to NADH. Finally, in preliminary inhibition studies, we have shown that triclosan, 5-ethyl-2-phenoxyphenol (EPP), and 5-chloro-2-phenoxyphenol (CPP) are all nanomolar slow-onset inhibitors of saFabI. These compounds inhibit the growth of S. aureus with MIC values of 0.03-0.06 microg/mL. Upon selection for resistance, three novel safabI mutations, A95V, I193S, and F204S, were identified. Strains containing these mutations had MIC values approximately 100-fold larger than that of the wild-type strain, whereas the purified mutant enzymes had K i values 5-3000-fold larger than that of wild-type saFabI. The increase in both MIC and K i values caused by the mutations supports the proposal that saFabI is the intracellular target for the diphenyl ether-based inhibitors.
Enterovirus 68 strains were detected in 14 specimens from children with respiratory tract infections and 1 specimen from a child with febrile convulsions during 2010 in Osaka, Japan. These strains had deletions in the 5′ untranslated region and were genetically different from reported strains. This virus is associated with respiratory tract infections in Japan.
Enteric viruses are an important cause of viral food-borne disease. Shellfish, especially oysters, are well recognized as a source of food-borne diseases, and oyster-associated gastroenteritis outbreaks have on occasion become international occurrences. In this study, 286 fecal specimens from 88 oyster-associated gastroenteritis outbreaks were examined for the presence of 10 human enteric viruses using antigenic or genetic detection methods in order to determine the prevalence of these infections. All virus-positive patients were over 18 years old. The most common enteric virus in outbreaks (96.6%) and fecal specimens (68.9%) was norovirus (NoV), indicating a high prevalence of NoV infection associated with the consumption of raw or under-cooked oysters. Five other enteric viruses, aichiviruses, astroviruses, sapoviruses, enteroviruses (EVs), and rotavirus A, were detected in 30.7% of outbreaks. EV strains were characterized into three rare genotypes, coxsackievirus (CV) A1, A19, and EV76. No reports of CVA19 or EV76 have been made since 1981 in the Infectious Agents Surveillance Report by the National Infectious Diseases Surveillance Center, Japan. Their detection suggested that rare types of EVs are circulating in human populations inconspicuously and one of their transmission modes could be the consumption of contaminated oysters. Rapid identification of pathogens is important for the development of means for control and prevention. The results of the present study will be useful to establish an efficient approach for the identification of viral pathogens in oyster-associated gastroenteritis in adults.
We characterized multidrug-resistant Pseudomonas aeruginosa strains isolated from patients involved in an outbreak of catheter-associated urinary tract infections that occurred in a neurosurgery ward of a hospital in Sendai, Japan. Pulsed-field gel electrophoresis of SpeI-, XbaI-, or HpaI-digested genomic DNAs from the isolates revealed that clonal expansion of a P. aeruginosa strain designated IMCJ2.S1 had occurred in the ward. This strain possessed broad-spectrum resistance to aminoglycosides, -lactams, fluoroquinolones, tetracyclines, sulfonamides, and chlorhexidine. Strain IMCJ2.S1 showed a level of resistance to some kinds of disinfectants similar to that of a control strain of P. aeruginosa, ATCC 27853. IMCJ2.S1 contained a novel class 1 integron, In113, in the chromosome but not on a plasmid. In113 contains an array of three gene cassettes of bla IMP-1 , a novel aminoglycoside resistance gene, and the aadA1 gene. The aminoglycoside resistance gene, designated aac(6)-Iae, encoded a 183-amino-acid protein that shared 57.1% identity with AAC(6)-Iq. Recombinant AAC(6)-Iae protein showed aminoglycoside 6-N-acetyltransferase activity by thin-layer chromatography. Escherichia coli expressing exogenous aac(6)-Iae showed resistance to amikacin, dibekacin, isepamicin, kanamycin, netilmicin, sisomicin, and tobramycin but not to arbekacin, gentamicins, or streptomycin. Alterations of gyrA and parC at the amino acid sequence level were detected in IMCJ2.S1, suggesting that such mutations confer the resistance to fluoroquinolones observed for this strain. These results indicate that P. aeruginosa IMCJ2.S1 has developed multidrug resistance by acquiring resistance determinants, including a novel member of the aac(6)-I family and mutations in drug resistance genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.