Expression of alpha-amylase genes in cultured rice suspension cells is induced by sucrose starvation. To study the mechanism of sugar metabolite regulation on the expression of individual alpha-amylase genes, DNA fragments specific to each of eight rice alpha-amylase genes were synthesized and used as gene-specific probes. Comparison of the relative abundance of mRNA revealed that expression of the eight alpha-amylase genes in rice cells was differentially regulated by sucrose starvation. Accumulation of all the alpha-amylase mRNAs increased in response to sucrose starvation; however, levels of the alphaAmy3 and alphaAmy8 mRNAs were distinctly higher and constituted 90% of total alpha-amylase mRNAs. RNA gel blot and nuclear run-on transcription analyses demonstrated a positive correlation between the increased transcription rates and the elevated steady-state levels of alpha-amylase mRNAs induced by sucrose starvation. The half-lives of alphaAmy3, alphaAmy7, and alphaAmy8 were prolonged by sucrose-starvation; however, the stability of the three mRNAs seems controlled by different mechanisms. The translation inhibitors cycloheximide and anisomycin preferentially blocked the sucrose-suppressed expression of alphaAmy3 but not that of alphaAmy7 and alphaAmy8. These inhibitors also enhanced the sucrose starvation-induced accumulation of alphaAmy3 mRNA but not that of alphaAmy7 or alphaAmy8 mRNAs. Cycloheximide did not significantly alter the transcription rates of alpha-amylase genes, suggesting that labile proteins may selectively stabilize the alphaAmy7 and alphaAmy8 mRNAs but destabilize the alphaAmy3 mRNA.
SummaryCarbon metabolites suppress the expression of a-amylase genes in germinating seeds and in suspension-cultured cells of rice. We have used suspension cell culture as a model system to study the mechanisms of metabolic regulation of a-amylase gene expression in rice. Both transcription rate and mRNA stability increased as cells were starved of sucrose; the transcription rate of a-amylase genes in cells starved of sucrose for 24 h was seven times greater than in cells provided with sucrose. The half-life of a-amylase mRNA was less than 1 h in cells provided with sucrose, but increased to 12 h in cells starved of this sugar. A protein synthesis inhibitor, cycloheximide (CHX), induced massive accumulation of a-amylase mRNA in cells provided with sucrose. The longer half-life of mRNA induced by sucrose starvation and the massive accumulation of mRNA caused by CHX were specific to the a-amylase genes, since actin genes were not similarly affected. Our findings suggest that both transcriptional and post-transcriptional control mechanisms are important in the metabolic regulation of a-amylase gene expression and de n o w synthesized proteins are involved in these mechanisms. The expression of a-amylase and actin genes is regulated in an opposite manner by sugars, which also suggests the operation of a differential regulatory mechanism under different growth conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.