Positioning systems are used in a wide range of applications which require determining the position of an object in space, such as locating and tracking assets, people and goods; assisting navigation systems; and mapping. Indoor Positioning Systems (IPSs) are used where satellite and other outdoor positioning technologies lack precision or fail. Ultra-WideBand (UWB) technology is especially suitable for an IPS, as it operates under high data transfer rates over short distances and at low power densities, although signals tend to be disrupted by various objects. This paper presents a comprehensive study of the precision, failure, and accuracy of 2D IPSs based on UWB technology and a pseudo-range multilateration algorithm using Time Difference of Arrival (TDoA) signals. As a case study, the positioning of a 4×4m2 area, four anchors (transceivers), and one tag (receiver) are considered using bitcraze’s Loco Positioning System. A Cramér–Rao Lower Bound analysis identifies the convex hull of the anchors as the region with highest precision, taking into account the anisotropic radiation pattern of the anchors’ antennas as opposed to ideal signal distributions, while bifurcation envelopes containing the anchors are defined to bound the regions in which the IPS is predicted to fail. This allows the formulation of a so-called flyable area, defined as the intersection between the convex hull and the region outside the bifurcation envelopes. Finally, the static bias is measured after applying a built-in Extended Kalman Filter (EKF) and mapped using a Radial Basis Function Network (RBFN). A debiasing filter is then developed to improve the accuracy. Findings and developments are experimentally validated, with the IPS observed to fail near the anchors, precision around ±3cm, and accuracy improved by about 15cm for static and 5cm for dynamic measurements, on average.
In this work, a novel high-speed single object tracker that is robust against non-semantic distractor exemplars is introduced; dubbed BOBBY2. It incorporates a novel exemplar buffer module that sparsely caches the target's appearance across time, enabling it to adapt to potential target deformation. In addition, we demonstrate that exemplar buffer is capable of providing redundancies in case of unintended target drifts, a desirable trait in any middle to long term tracking. Even when the buffer is predominantly filled with distractors instead of valid exemplars, BOBBY2 is capable of maintaining a near-optimal level of accuracy. In terms of speed, BOBBY2 utilises a stripped down AlexNet as feature extractor with 63% less parameters than a vanilla AlexNet, thus being able to run at 85 FPS. An augmented ImageNet-VID dataset was used for training with the one cycle policy, enabling it to reach convergence with less than 2 epoch worth of data. For validation, the model was benchmarked on the GOT-10k dataset and on an additional small, albeit challenging custom UAV dataset collected with the TU-3 UAV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.