Absolute sensitivity is measured for the phase measurement in an SU(1,1) type interferometer, and the results are compared to that of a Mach-Zehnder interferometer operated under the condition of the same intra-interferometer intensity. The interferometer is phase locked to a point with the largest quantum noise cancellation, and a simulated phase modulation is added in one arm of the SU(1,1) interferometer. Both the signal and noise level are estimated at the same frequency range, and we obtained 3 dB improvement in sensitivity for the SU(1,1) interferometer over the Mach-Zehnder interferometer. Our results demonstrate a direct phase estimation and may pave the way for practical applications of a nonlinear interferometer.
We demonstrate a new phase-matching geometry for four-wave mixing processes in hot Rb85 vapor, in which all four fields propagate in different directions but two of them are degenerate in frequency. When used as a parametric amplifier with an injected seed, two types of quantum mechanically correlated twin-beam states, either frequency degenerate or nondegenerate, can be generated. The quantum noise reduction in the intensity difference is almost 7 dB for the nondegenerate type and nearly 5 dB for the degenerate type. The spatial nondegeneracy of the four waves allows a variety of configurations of parametric processes, leading to flexible control for both phase insensitive and sensitive parametric amplification. The spatially nondegenerate but frequency degenerate four-wave mixing process will find wide applications in quantum metrology, quantum communication, and quantum information of continuous variables.
Signal processing is studied for Sagnac fiber distributed sensors. Wavelet de-noising and wavelet decomposition are comparatively used to analyze signals in frequency domain to give smoothed frequency spectra, based on which null frequencies of the spectra are found more accurately. The analysis is helpful to more accurately locate the disturbance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.