This paper analyzes the quantitative assessment model of the swimming training effect based on the deep neural network by constructing a deep neural network model and designing a quantitative assessment model of the swimming training effect. This paper addresses the problem of not considering the influence of the uncertainties existing in the virtual environment when evaluating swimming training and adds the power of the delays in the actual training operation environment, which is used to improve the objectivity and usability of swimming training evaluation results. To better measure the degree of influence of uncertainties, a training evaluation software module is developed to validate the usability of the simulated training evaluation method using simulated case data and compare it with the data after training evaluation using the unimproved evaluation method to verify the correctness and objectivity of the evaluation method in this paper. In the experiments, the feature extractor is a deep neural network, and the classifier is a gradient-boosting decision tree with integrated learning advantages. In the experimental comparison, we can achieve more than 60% accuracy and no more than a 1.00% decrease in recognition rate on DBPNN + GBDT, 78.5% parameter reduction, and 54.5% floating-point reduction on DPBNN. We can effectively reduce 32.1% of video memory occupation. It can be concluded from the experiments that deep neural network models are more effective and easier to obtain relatively accurate experimental results than shallow learning when facing high-dimensional sparse features. At the same time, deep neural networks can also improve the prediction results of external learning models. Therefore, the experimental results of this model are most intuitively accurate when combining deep neural networks with gradient boosting decision trees.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.