The static magnetic field and the alternating electric field were simultaneously imposed on AZ91D magnesium alloy melt, and α-dendrite particles were refined by the electromagnetic vibrations. The effect of the frequency of electromagnetic vibrations on microstructural refinement was quantitatively investigated. In the frequency range from 60 to 1000 Hz, the vibration frequency near 200 Hz was the most effective for the refinement of α-dendrite particles, and α-dendrite particles were refined up to approximately 100 μm from 1800 μm at this frequency. However, the effect of refinement by the electromagnetic vibrations became weak at frequencies above 400 Hz. Although the degree of refinement of the primary particles differed with the frequency of the electromagnetic vibrations, the dendrite arm spacing was almost constant, 30–40 μm, in our experiment. Therefore, the refinement of primary α-dendrite particles is likely to be caused by collapse of dendrite arms due to the cavitation phenomenon and the stirring of the melt.
In this paper a theoretical analysis of the R 0 A product and the detectivity in a GaInAsSb infrared photovoltaic detector is reported, dependent on the four fundamental kinds of noise mechanism and the quantum efficiency. The considerations are carried out for near room temperature and 2.5 µm wavelength. The analytical results show that the noise mechanisms can be reduced, and correspondingly the performance of such detectors can be improved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.