Condensins are molecular motors that compact DNA via linear translocation. In Caenorhabditis elegans, the X-chromosome harbors a specialized condensin that participates in dosage compensation (DC). Condensin DC is recruited to and spreads from a small number of recruitment elements on the X-chromosome (rex) and is required for the formation of topologically associating domains (TADs). We take advantage of autosomes that are largely devoid of condensin DC and TADs to address how rex sites and condensin DC give rise to the formation of TADs. When an autosome and X-chromosome are physically fused, despite the spreading of condensin DC into the autosome, no TAD was created. Insertion of a strong rex on the X-chromosome results in the TAD boundary formation regardless of sequence orientation. When the same rex is inserted on an autosome, despite condensin DC recruitment, there was no spreading or features of a TAD. On the other hand, when a ‘super rex’ composed of six rex sites or three separate rex sites are inserted on an autosome, recruitment and spreading of condensin DC led to the formation of TADs. Therefore, recruitment to and spreading from rex sites are necessary and sufficient for recapitulating loop-anchored TADs observed on the X-chromosome. Together our data suggest a model in which rex sites are both loading sites and bidirectional barriers for condensin DC, a one-sided loop-extruder with movable inactive anchor.
Condensin is a multi-subunit SMC complex that binds to and compacts chromosomes. Here we addressed the regulation of condensin binding dynamics using C. elegans condensin DC, which represses X chromosomes in hermaphrodites for dosage compensation. We established fluorescence recovery after photobleaching (FRAP) using the SMC4 homolog DPY-27 and showed that a well-characterized ATPase mutation abolishes its binding. Next, we performed FRAP in the background of several chromatin modifier mutants that cause varying degrees of X-chromosome derepression. The greatest effect was in a null mutant of the H4K20me2 demethylase DPY-21, where the mobile fraction of condensin DC reduced from ∼30% to 10%. In contrast, a catalytic mutant of dpy-21 did not regulate condensin DC mobility. Hi-C data in the dpy-21 null mutant showed little change compared to wild type, uncoupling Hi-C measured long-range DNA contacts from transcriptional repression of the X chromosomes. Together, our results indicate that DPY-21 has a non-catalytic role in regulating the dynamics of condensin DC binding, which is important for transcription repression.
Condensins are molecular motors that compact DNA for chromosome segregation and gene regulation. In vitro experiments have begun to elucidate the mechanics of condensin function but how condensin loading and translocation along DNA controls eukaryotic chromosome structure in vivo remains poorly understood. To address this question, we took advantage of a specialized condensin, which organizes the 3D conformation of X chromosomes to mediate dosage compensation (DC) in C. elegans. Condensin DC is recruited and spreads from a small number of recruitment elements on the X chromosome (rex). We found that ectopic insertion of rex sites on an autosome leads to bidirectional spreading of the complex over hundreds of kilobases. On the X chromosome, strong rex sites contain multiple copies of a 12-bp sequence motif and act as TAD borders. Inserting a strong rex and ectopically recruiting the complex on the X chromosome or an autosome creates a loop-anchored TAD. Unlike the CTCF system, which controls TAD formation by cohesin, direction of the 12-bp motif does not control the specificity of loops. In an X;V fusion chromosome, condensin DC linearly spreads into V and increases 3D DNA contacts, but fails to form TADs in the absence of rex sites. Finally, we provide in vivo evidence for the loop extrusion hypothesis by targeting multiple dCas9-Suntag complexes to an X chromosome repeat region. Consistent with linear translocation along DNA, condensin DC accumulates at the block site. Together, our results support a model whereby strong rex sites act as insulation elements through recruitment and bidirectional spreading of condensin DC molecules and form loop-anchored TADs.
SummaryCondensin complexes are evolutionarily conserved molecular motors that translocate along DNA and form loops. While condensin-mediated DNA looping is thought to direct the chain-passing activity of topoisomerase II to separate sister chromatids, it is not known if topological constraints in turn regulate loop formation in vivo. Here we applied auxin inducible degradation of topoisomerases I and II to determine how DNA topology affects the translocation of an X chromosome specific condensin that represses transcription for dosage compensation in C. elegans (condensin DC). We found that both topoisomerases colocalize with condensin DC and control its movement at different genomic scales. TOP-2 depletion hindered condensin DC translocation over long distances, resulting in accumulation around its X-specific recruitment sites and shorter Hi-C interactions. In contrast, TOP-1 depletion did not affect long-range spreading but resulted in accumulation of condensin DC within expressed gene bodies. Both TOP-1 and TOP-2 depletions resulted in X chromosome transcriptional upregulation indicating that condensin DC translocation at both scales is required for its function in gene repression. Together the distinct effects of TOP-1 and TOP-2 on condensin DC distribution revealed two distinct modes of condensin DC association with chromatin: long-range translocation that requires decatenation/unknotting of DNA and short-range translocation across genes that requires resolution of transcription-induced supercoiling.
Condensin is a multi-subunit SMC complex that binds to and compacts chromosomes. Unlike cohesin, in vivo regulators of condensin binding dynamics remain unclear. Here we addressed this question using C. elegans condensin DC, which specifically binds to and represses transcription of both X chromosomes in hermaphrodites for dosage compensation. Mutants of several chromatin modifiers that regulate H4K20me and H4K16ac cause varying degrees of X chromosome derepression. We used fluorescence recovery after photobleaching (FRAP) to analyze how these modifiers regulate condensin DC binding dynamics in vivo. We established FRAP using the SMC4 homolog DPY-27 and showed that a well-characterized ATPase mutation abolishes its binding. The greatest effect on condensin DC dynamics was in a null mutant of the H4K20me2 demethylase DPY-21, where the mobile fraction of the complex reduced from ~30% to 10%. In contrast, a catalytic mutant of dpy-21 did not regulate condensin DC mobility. Separation of catalytic and non-catalytic activity is also supported by Hi-C data in the dpy-21 null mutant. Together, our results indicate that DPY-21 has a non-catalytic role in regulating the dynamics of condensin DC binding, which is important for transcription repression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.