Abstract. We present results from a combined multichannel seismic reflection (MCS) and wideangle onshore/offshore seismic experiment conducted in 1996 across the southeast Greenland continental margin. A new seismic tomographic method is developed to jointly invert refraction and reflection travel times for a two-dimensional velocity structure. We employ a hybrid raytracing scheme based on the graph method and the local ray-bending refinement to efficiently obtain an accurate forward solution, and we employ smoothing and optional damping constraints to regularize an iterative inversion. We invert 2318 Pg and 2078 PmP travel times to construct a compressional velocity model for the 350-km-long transect, and a long-wavelength structure with strong lateral heterogeneity is recovered, including (1) -30-km-thick, undeformed continental crust with a velocity of 6.0 to 7.0 km/s near the landward end, (2) 30-to 15-km-thick igneous crust within a 150-km-wide continent-ocean transition zone, and (3) 15-to 9-km-thick oceanic crust toward the seaward end. The thickness of the igneous upper crust characterized by a highvelocity gradient also varies from 6 km within the transition zone to -3 km seaward. The bottom half of the lower crust generally has a velocity higher than 7.0 km/s, reaching a maximum of 7.2 to 7.5 km/s at the Moho. A nonlinear Monte Carlo uncertainty analysis is performed to estimate the a posteriori model variance, showing that most velocity and depth nodes are well determined with one standard deviation of 0.05-0.10 km/s and 0.25-1.5 km, respectively. Despite significant variation in crustal thickness, the mean velocity of the igneous crust, which serves as a proxy for the bulk crustal composition, is surprisingly constant (-7.0 km/s) along the transect. On the basis of a mantle melting model incorporating the effect of active mantle upwelling, this velocitythickness relationship is used to constrain the mantle melting process during the breakup of Greenland and Europe. Our result is consistent with a nearly constant mantle potential temperature of 1270-1340øC throughout the rifting but with a rapid transition in the style of mantle upwelling, from vigorous active upwelling during the initial rifting phase to passive upwelling in the later phase.
[1] We present a new statistical method to construct a model for the chemical composition of Earth's primitive mantle along with its variance. Earth's primitive mantle is located on the melting trend exhibited by the global compilation of mantle peridotites, using cosmochemical constraints on the relative abundances of refractory lithophile elements (RLE). This so-called pyrolite approach involves the least amount of assumptions, thereby being probably most satisfactory compared to other approaches. Its previous implementations, however, suffer from questionable statistical treatment of noisy geochemical data, leaving the uncertainty of model composition poorly quantified. In order to properly take into account how scatters in peridotite data affect this geochemical inference, we combine the following statistical techniques: (1) modeling a nonlinear melting trend in the multidimensional compositional space through the principal component analysis, (2) determining the primitive mantle composition on the melting trend by simultaneously imposing all of cosmochemical constraints with least squares, and (3) mapping scatters in original data into the variance of the final model through the bootstrap resampling technique. Whereas our model is similar to previous models in terms of Mg, Si, and Fe abundances, the RLE contents are at $2.16 ± 0.37 times the CI chondrite concentration, which is lower than most of previous estimates. The new model is depleted by >20% in a number of incompatible elements including heat-producing elements, U, Th, and K, and this depleted nature is further amplified (up to 60%) in terms of predicted composition for the present-day mantle.
The Urey ratio describes the contribution of internal heat production to planetary‐scale energy balance, and knowing this thermal budget for Earth is essential to understand its long‐term evolution. Internal heat production is provided by the decay of radiogenic elements, whose budget is constrained by geochemical models of Earth. Understanding the thermal budget thus requires contributions from both geophysics and geochemistry. The purpose of this review is to elucidate various geochemical and geophysical arguments and to delineate the most likely thermal budget of Earth. While the bulk Earth Urey ratio is probably ∼0.35, the convective Urey ratio is estimated to be ∼0.2. That is, only ∼20% of convective heat flux seems to originate from radiogenic elements at present, so the rest should be supported by secular cooling. A likely scenario for Earth's thermal history indicates that the peculiarity of today's significant imbalance between heat production and heat loss may result from the initiation of plate tectonics in the early Earth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.