We develop an algorithmic framework for solving convex optimization problems using no-regret game dynamics. By converting the problem of minimizing a convex function into an auxiliary problem of solving a min-max game in a sequential fashion, we can consider a range of strategies for each of the two-players who must select their actions one after the other. A common choice for these strategies are so-called no-regret learning algorithms, and we describe a number of such and prove bounds on their regret. We then show that many classical first-order methods for convex optimization-including average-iterate gradient descent, the Frank-Wolfe algorithm, the Heavy Ball algorithm, and Nesterov's acceleration methods-can be interpreted as special cases of our framework as long as each player makes the correct choice of no-regret strategy. Proving convergence rates in this framework becomes very straightforward, as they follow from plugging in the appropriate known regret bounds. Our framework also gives rise to a number of new first-order methods for special cases of convex optimization that were not previously known.
The Heavy Ball Method (Polyak, 1964), proposed by Polyak over five decades ago, is a first-order method for optimizing continuous functions. While its stochastic counterpart has proven extremely popular in training deep networks, there are almost no known functions where deterministic Heavy Ball is provably faster than the simple and classical gradient descent algorithm in non-convex optimization. The success of Heavy Ball has thus far eluded theoretical understanding. Our goal is to address this gap, and in the present work we identify two non-convex problems where we provably show that the Heavy Ball momentum helps the iterate to enter a benign region that contains a global optimal point faster. We show that Heavy Ball exhibits simple dynamics that clearly reveal the benefit of using a larger value of momentum parameter for the problems. The first of these optimization problems is the phase retrieval problem, which has useful applications in physical science. The second of these optimization problems is the cubic-regularized minimization, a critical subroutine required by Nesterov-Polyak cubic-regularized method (Nesterov & Polyak (2006)) to find second-order stationary points in general smooth non-convex problems.
We revisit the Frank-Wolfe (FW) optimization under strongly convex constraint sets. We provide a faster convergence rate for FW without line search, showing that a previously overlooked variant of FW is indeed faster than the standard variant. With line search, we show that FW can converge to the global optimum, even for smooth functions that are not convex, but are quasi-convex and locally-Lipschitz. We also show that, for the general case of (smooth) non-convex functions, FW with line search converges with high probability to a stationary point at a rate of O( 1 t ), as long as the constraint set is strongly convex-one of the fastest convergence rates in non-convex optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.