Macrophages infiltrate adipose tissue in obesity and are involved in the induction of inflammation, thereby contributing to the development of obesity-associated metabolic disorders. Here, we show that the macrophage-derived soluble protein AIM is endocytosed into adipocytes via CD36. Within adipocytes, AIM associates with cytosolic fatty acid synthase (FAS), thereby decreasing FAS activity. This decreases lipid droplet size, stimulating the efflux of free fatty acids and glycerol from adipocytes. As an additional consequence of FAS inhibition, AIM prevents preadipocyte maturation. In vivo, the increase in adipocyte size and fat weight induced by high-fat diet (HFD) was accelerated in AIM-deficient (AIM(-)(/-)) mice compared to AIM(+/+) mice. Moreover, injection of recombinant AIM in AIM(-)(/-) mice suppresses the increase in fat mass induced by HFD. Interestingly, metabolic rates are comparable in AIM(-)(/-) and AIM(+/+) mice, suggesting that AIM specifically influences adipocyte status. Thus, this AIM function in adipocytes may be physiologically relevant to obesity progression.
Natural immunoglobulin M (IgM) is reactive to autoantigens and is believed to be important for autoimmunity. Blood pentameric IgM loaded with antigens forms a large immune complex (IC) that contains various elements, including apoptosis inhibitor of macrophage (AIM). Here we demonstrate that this IgM-AIM association contributes to autoantibody production under obese conditions. In mice fed a high-fat diet, natural IgM increased through B cell TLR4 stimulation. AIM associated with IgM and protected AIM from renal excretion, increasing blood AIM levels along with the obesity-induced IgM augmentation. Meanwhile, the AIM association inhibited IgM binding to the Fcα/μ receptor on splenic follicular dendritic cells, thereby protecting the IgM IC from Fcα/μ receptor-mediated internalization. This supported IgM-dependent autoantigen presentation to B cells, stimulating IgG autoantibody production. Accordingly, in obese AIM-deficient (AIM(-/-)) mice, the increase of multiple IgG autoantibodies observed in obese wild-type mice was abrogated. Thus, the AIM-IgM association plays a critical role in the obesity-associated autoimmune process.
Hepatocellular carcinoma (HCC) is a widespread fatal disease and the third most common cause of cancer deaths. Here, we show the potent anti-HCC effect of the circulating protein AIM. As in adipocytes, AIM is incorporated into normal hepatocytes, where it interferes with lipid storage. In contrast, AIM accumulates on the HCC cell surface and activates the complement cascade via inactivating multiple regulators of complement activation. This response provokes necrotic cell death specifically in AIM-bound HCC cells. Accordingly, AIM(-/-) mice were highly susceptible to steatosis-associated HCC development, whereas no AIM(+/+) mouse developed the disease despite comparable liver inflammation and fibrosis in response to a long-term high-fat diet. Administration of AIM prevented tumor development in AIM(-/-) mice, and HCC induction by diethylnitrosamine was more prominent in AIM(-/-) than wild-type mice. These findings could be the basis for novel AIM-based therapeutic strategies for HCC.
Infiltration of inflammatory macrophages into adipose tissues with the progression of obesity triggers insulin resistance and obesity-related metabolic diseases. We recently reported that macrophage-derived apoptosis inhibitor of macrophage (AIM) protein is increased in blood in line with obesity progression and is incorporated into adipocytes, thereby inducing lipolysis in adipose tissue. Here we show that such a response is required for the recruitment of adipose tissue macrophages. In vitro, AIM-dependent lipolysis induced an efflux of palmitic and stearic acids from 3T3-L1 adipocytes, thereby stimulating chemokine production in adipocytes via activation of toll-like receptor 4 (TLR4). In vivo administration of recombinant AIM to TLR4 -deficient ( TLR4 −/− ) mice resulted in induction of lipolysis without chemokine production in adipose tissues. Consistently, mRNA levels for the chemokines that affect macrophages were far lower in AIM -deficient ( AIM −/− ) than in wild-type ( AIM +/+ ) obese adipose tissue. This reduction in chemokine production resulted in a marked prevention of inflammatory macrophage infiltration into adipose tissue in obese AIM −/− mice, although these mice showed more advanced obesity than AIM +/+ mice on a high-fat diet. Diminished macrophage infiltration resulted in decreased inflammation locally and systemically in obese AIM −/− mice, thereby protecting them from insulin resistance and glucose intolerance. These results indicate that the increase in blood AIM is a critical event for the initiation of macrophage recruitment into adipose tissue, which is followed by insulin resistance. Thus, AIM suppression might be therapeutically applicable for the prevention of obesity-related metabolic disorders.
During intrauterine life, the mammalian embryo survives via its physical connection to the mother. The uterine decidua, which differentiates from stromal cells after implantation in a process known as decidualization, plays essential roles in supporting embryonic growth before establishment of the placenta. Here we show that female mice lacking death effector domain-containing protein (DEDD) are infertile owing to unsuccessful decidualization. In uteri of Dedd -/-mice, development of the decidual zone and the surrounding edema after embryonic implantation was defective. This was subsequently accompanied by disintegration of implantation site structure, leading to embryonic death before placentation. Polyploidization, a hallmark of mature decidual cells, was attenuated in DEDD-deficient cells during decidualization. Such inefficient decidualization appeared to be caused by decreased Akt levels, since polyploidization was restored in DEDD-deficient decidual cells by overexpression of Akt. In addition, we showed that DEDD associates with and stabilizes cyclin D3, an important element in polyploidization, and that overexpression of cyclin D3 in DEDD-deficient cells improved polyploidization. These results indicate that DEDD is indispensable for the establishment of an adequate uterine environment to support early pregnancy in mice. IntroductionApproximately 10%-15% of couples experience infertility during their reproductive years, owing mainly to implantation failure. Among the reasons underlying such failure, defective development of functional decidua at the implantation site within the uterus has recently been highlighted (1-3). In response to implantation, stromal cells immediately surrounding the mucosal crypt where the embryo is embedded proliferate extensively and undergo differentiation into polyploid decidual cells, forming an avascular primary decidual zone, followed by a broad, well-vascularized secondary decidual zone. It is believed that this decidual structure is important for the provision of nutrition to the developing embryo and also acts as a barrier against uncontrolled trophoblast proliferation until the placenta develops. Analyses of mutant mice that show female infertility, such as in knockout mice for homeobox A10 (Hoxa10) (4, 5) or IL-11 receptor (6), have contributed to the investigation of the molecular mechanisms involved in decidualization. Recent evidence has implicated cell-cycle regulation as being essential for both the proliferation and differentiation of stromal cells. In particular, Das and colleagues reported that cyclin D3-dependent activation of cyclin-dependent kinase 4 (Cdk4) or Cdk6 appears to be involved sequentially in those two events during decidua formation (7). In addition to these essential elements, in this report, we present data indicating that the death effector domaincontaining (DED-containing) protein DEDD is indispensable for the maturation of decidual cells and support of female fertility in mice.We previously found that the DEDD protein, initially described as...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.