This study investigated the effect of water restriction on wool and blood cortisol concentrations and water consumption patterns in heat-stressed sheep. Nine Corriedale female sheep (average BW = 43 ± 6.5 kg) were individually fed diets based on maintenance requirement in metabolic crates. They were assigned to three treatments according to a Latin square design (3 × 3) for three periods with a 21-day duration for each period (nine sheep per treatment). Treatments included free access to water (FAW), 2 h water restriction (2hWR) and 3 h water restriction (3hWR) after feeding. Average temperaturehumidity index in the experimental room was 27.9 throughout the experiment that defines heat stress conditions. Wool samples were taken at the end of each period on day 21. No differences were found in cortisol concentration in each fragment (dried, washed and residual extract) of wool (P < 0.05). Total wool cortisol concentration was higher in the 3hWR group than the other treatments (P < 0.05). Blood cortisol was not different among the treatments (P > 0.05) and resulted in higher variable data compared with wool cortisol. Blood neutrophils and neutrophil/lymphocyte ratio suppressed in FAW and 3hWR groups compared with the 2hWR group (P < 0.05). The duration of water consumption recorded after feeding in the 3hWR group was higher than in the 2hWR group when recorded in the afternoon (P < 0.01). Water consumption rate was higher in the 3hWR group than in the 2hWR group (P < 0.01). However, total water consumed was lower in the 3hWR group compared with other treatments (P > 0.05). It can be concluded that wool cortisol provides more precise and accurate data than blood cortisol during heat stress conditions. Water restriction for 3 h after feeding can act as a stressor and is critical for sheep during heat stress as the consumption of water decreases with restriction.
Microbiota plays a critical role in the overall growth performance and health status of dairy cows, especially during their early life. Several studies have reported that fecal microbiome of neonatal calves is shifted by various factors such as diarrhea, antibiotic treatment, or environmental changes. Despite the importance of gut microbiome, a lack of knowledge regarding the composition and functions of microbiota impedes the development of new strategies for improving growth performance and disease resistance during the neonatal calf period. In this study, we utilized next-generation sequencing to monitor the time-dependent dynamics of the gut microbiota of dairy calves before weaning (1–8 weeks of age) and further investigated the microbiome changes caused by diarrhea. Metagenomic analysis revealed that continuous changes, including increasing gut microbiome diversity, occurred from 1 to 5 weeks of age. However, the composition and diversity of the fecal microbiome did not change after 6 weeks of age. The most prominent changes in the fecal microbiome composition caused by aging at family level were a decreased abundance of Bacteroidaceae and Enterobacteriaceae and an increased abundance of Prevotellaceae. Phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) analysis indicated that the abundance of microbial genes associated with various metabolic pathways changed with aging. All calves with diarrhea symptoms showed drastic microbiome changes and about a week later returned to the microbiome of pre-diarrheal stage regardless of age. At phylum level, abundance of Bacteroidetes was decreased (p = 0.09) and that of Proteobacteria increased (p = 0.07) during diarrhea. PICRUSt analysis indicated that microbial metabolism-related genes, such as starch and sucrose metabolism, sphingolipid metabolism, alanine aspartate, and glutamate metabolism were significantly altered in diarrheal calves. Together, these results highlight the important implications of gut microbiota in gut metabolism and health status of neonatal dairy calves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.