The promotion of magnetic field on catalytic performance has attracted extensive attention for a long time, and substantial improvements have been achieved in some catalysis fields. However, because the Zeeman energy is several orders of magnitude weaker, magnetic field seems unable to alter the band structure and has a negligible effect on semiconductor photocatalytic performance, which makes this task a great challenge. On the other hand, the spin-related behavior usually plays an important role in determining catalytic performance. For example, in some molecular catalysis, such as photosystem II, ferromagnetic alignment of the active material results in spin-oriented electrons, which are selected and accumulated at the interface, leading to great promotion of the oxygen evolution reaction activity. Here, we propose a magnetoresistance-related strategy to boost the carrier transfer efficiency and apply it in α-FeO/reduced graphene oxide hybrid nanostructures (α-FeO/rGO) to improve the photocatalytic performance under magnetic field. We show that both the degradation rate constant and photocurrent density of α-FeO/rGO can be dramatically enhanced with the application of magnetic field, indicating the promotion of the photocatalytic performance.
Density functional theory calculations were carried out to investigate the reaction mechanism of selective catalytic reduction of nitrogen oxides by ammonia in the presence of oxygen at the Brønsted acid sites of H-form zeolites. The Brønsted acid site of H-form zeolites was modeled by an aluminosilicate cluster containing five tetrahedral (Al, Si) atoms. A low-activation-energy pathway for the catalytic reduction of NO was proposed. It consists of two successive stages: first NH(2)NO is formed in gas phase, and then is decomposed into N(2) and H(2)O over H-form zeolites. In the first stage, the formation of NH(2)NO may occur via two routes: (1) NO is directly oxidized by O(2) to NO(2), and then NO(2) combines with NO to form N(2)O(3), which reacts with NH(3) to produce NH(2)NO; (2) when NO(2) exceeds NO in the content, NO(2) associates with itself to form N(2)O(4), and then N(2)O(4) reacts with NH(3) to produce NH(2)NO. The second stage was suggested to proceed with low activation energy via a series of synergic proton transfer steps catalyzed by H-form zeolites. The rate-determining step for the whole reduction of NO(x) is identified as the oxidation of NO to NO(2) with an activation barrier of 15.6 kcal mol(-1). This mechanism was found to account for many known experimental facts related to selective catalytic reduction of nitrogen oxides by ammonia over H-form zeolites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.