Background Accumulating evidence has suggested that human gut microbiota metabolize certain dietary compounds and subsequently produce bioactive metabolites that may exert beneficial or harmful effects on coronary artery disease (CAD) risk. Objectives This study examined the joint association of 2 gut microbiota metabolites, enterolactone and trimethylamine N-oxide (TMAO), that originate from intake of plant-based foods and animal products, respectively, in relation to CAD risk. Methods A prospective nested case—control study of CAD was conducted among participants who were free of diabetes, cardiovascular disease, and cancer in the Nurses’ Health Study II and the Health Professionals Follow-up Study. Plasma concentrations of enterolactone and TMAO, as well as choline and L-carnitine, were assayed among 608 CAD case-control pairs. Results A high enterolactone and low TMAO profile was associated with better diet quality, especially higher intake of whole grains and fiber and lower intake of red meats, as well as lower concentrations of plasma triglycerides and C-reactive protein. Participants with a high enterolactone/low TMAO profile had a significantly lower risk of CAD: the multivariate-adjusted OR was 0.58 (95% CI: 0.38, 0.90), compared with participants with a low enterolactone/high TMAO profile. No significant interaction between enterolactone and TMAO on CAD risk was observed. Neither TMAO nor enterolactone alone were associated with CAD risk in pooled analyses. In women, a higher enterolactone concentration was significantly associated with a 54% lower CAD risk (P trend = 0.03), although the interaction by sex was not significant. Conclusions Our results show that a profile characterized by high enterolactone and low TMAO concentrations in plasma is linked to a healthful dietary pattern and significantly associated with a lower risk of CAD. Overall, these data suggest that, compared with individual markers, multiple microbiota-derived metabolites may facilitate better differentiation of CAD risk and characterization of the relations between diet, microbiota, and CAD risk.
Background The tryptophan–kynurenine pathway is linked to inflammation. We hypothesize that metabolites implicated in this pathway may be associated with the risk of heart failure (HF) or atrial fibrillation (AF) in a population at high risk of cardiovascular disease. Objectives We aimed to prospectively analyze the associations of kynurenine-related metabolites with the risk of HF and AF and to analyze a potential effect modification by the randomized interventions of the PREDIMED (Prevención con Dieta Mediterránea) trial with Mediterranean diet (MedDiet). Methods Two case–control studies nested within the PREDIMED trial were designed. We selected 324 incident HF cases and 502 incident AF cases individually matched with ≤3 controls. Conditional logistic regression models were fitted. Interactions with the intervention were tested for each of the baseline plasma metabolites measured by LC–tandem MS. Results Higher baseline kynurenine:tryptophan ratio (OR for 1 SD: 1.20; 95% CI: 1.01, 1.43) and higher levels of kynurenic acid (OR: 1.19; 95% CI: 1.01, 1.40) were associated with HF. Quinolinic acid was associated with AF (OR: 1.15; 95% CI: 1.01, 1.32) and HF (OR: 1.25; 95% CI: 1.04, 1.49). The MedDiet intervention modified the positive associations of kynurenine (Pinteraction = 0.006), kynurenic acid (Pinteraction = 0.008), and quinolinic acid (Pinteraction = 0.033) with HF and the association between kynurenic acid and AF (Pinteraction = 0.02). Conclusions We found that tryptophan–kynurenine pathway metabolites were prospectively associated with higher HF risk and to a lesser extent with AF risk. Moreover, an effect modification by MedDiet was observed for the association between plasma baseline kynurenine-related metabolites and the risk of HF, showing that the positive association of increased levels of these metabolites and HF was restricted to the control group.
Coffee may protect against multiple chronic diseases, particularly type 2 diabetes, but the mechanisms remain unclear. RESEARCH DESIGN AND METHODSLeveraging dietary and metabolomic data in two large cohorts of women (the Nurses' Health Study [NHS] and NHSII), we identified and validated plasma metabolites associated with coffee intake in 1,595 women. We then evaluated the prospective association of coffee-related metabolites with diabetes risk and the added predictivity of these metabolites for diabetes in two nested case-control studies (n 5 457 case and 1,371 control subjects). RESULTSOf 461 metabolites, 34 were identified and validated to be associated with total coffee intake, including 13 positive associations (primarily trigonelline, polyphenol metabolites, and caffeine metabolites) and 21 inverse associations (primarily triacylglycerols [TAGs] and diacylglycerols [DAGs]). These associations were generally consistent for caffeinated and decaffeinated coffee, except for caffeine and its metabolites that were only associated with caffeinated coffee intake. The three cholesteryl esters positively associated with coffee intake showed inverse associations with diabetes risk, whereas the 12 metabolites negatively associated with coffee (5 DAGs and 7 TAGs) showed positive associations with diabetes. Adding the 15 diabetes-associated metabolites to a classical risk factor-based prediction model increased the C-statistic from 0.79 (95% CI 0.76, 0.83) to 0.83 (95% CI 0.80, 0.86) (P < 0.001). Similar improvement was observed in the validation set. CONCLUSIONSCoffee consumption is associated with widespread metabolic changes, among which lipid metabolites may be critical for the antidiabetes benefit of coffee. Coffeerelated metabolites might help improve prediction of diabetes, but further validation studies are needed.Coffee is one of the most popular beverages worldwide. Accumulating evidence indicates that long-term coffee intake is associated with lower risks of various chronic diseases, including type 2 diabetes, cardiovascular disease, and some types of cancer (1). Therefore, the 2015-2020 U.S. Dietary Guidelines recommend moderate coffee consumption as part of a healthy dietary pattern (2).
Background Both genetic and lifestyle factors contribute to the risk of type 2 diabetes, but the extent to which there is a synergistic effect of the 2 factors is unclear. The aim of this study was to examine the joint associations of genetic risk and diet quality with incident type 2 diabetes. Methods and findings We analyzed data from 35,759 men and women in the United States participating in the Nurses’ Health Study (NHS) I (1986 to 2016) and II (1991 to 2017) and the Health Professionals Follow-up Study (HPFS; 1986 to 2016) with available genetic data and who did not have diabetes, cardiovascular disease, or cancer at baseline. Genetic risk was characterized using both a global polygenic score capturing overall genetic risk and pathway-specific polygenic scores denoting distinct pathophysiological mechanisms. Diet quality was assessed using the Alternate Healthy Eating Index (AHEI). Cox models were used to calculate hazard ratios (HRs) for type 2 diabetes after adjusting for potential confounders. With over 902,386 person-years of follow-up, 4,433 participants were diagnosed with type 2 diabetes. The relative risk of type 2 diabetes was 1.29 (95% confidence interval [CI] 1.25, 1.32; P < 0.001) per standard deviation (SD) increase in global polygenic score and 1.13 (1.09, 1.17; P < 0.001) per 10-unit decrease in AHEI. Irrespective of genetic risk, low diet quality, as compared to high diet quality, was associated with approximately 30% increased risk of type 2 diabetes (Pinteraction = 0.69). The joint association of low diet quality and increased genetic risk was similar to the sum of the risk associated with each factor alone (Pinteraction = 0.30). Limitations of this study include the self-report of diet information and possible bias resulting from inclusion of highly educated participants with available genetic data. Conclusions These data provide evidence for the independent associations of genetic risk and diet quality with incident type 2 diabetes and suggest that a healthy diet is associated with lower diabetes risk across all levels of genetic risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.