BackgroundOn average, 570 million users, 93% in China’s first-tier cities, log on to WeChat every day. WeChat has become the most widely and frequently used social media in China, and has been profoundly integrated into the daily life of many Chinese people. A variety of health-related information may be found on WeChat. The objective of this study is to understand how the general public views the impact of the rapidly emerging social media on health information acquisition.MethodsA self-administered questionnaire was designed, distributed, collected, and analyzed utilizing the online survey tool Sojump. WeChat was adopted to randomly release the questionnaires using convenience sampling and collect the results after a certain amount of time.Results(1) A total of 1636 questionnaires (WeChat customers) were collected from 32 provinces. (2) The primary means by which respondents received health education was via the Internet (71.79%). Baidu and WeChat were the top 2 search tools utilized (90.71% and 28.30%, respectively). Only 12.41% of respondents were satisfied with their online health information search. (3) Almost all had seen (98.35%) or read (97.68%) health information; however, only 14.43% believed that WeChat health information could improve health. Nearly one-third frequently received and read health information through WeChat. WeChat was selected (63.26%) as the most expected means for obtaining health information. (4) The major concerns regarding health information through WeChat included the following: excessively homogeneous information, the lack of a guarantee of professionalism, and the presence of advertisements. (5) Finally, the general public was most interested in individualized and interactive health information by managing clinicians, they will highly benefit from using social media rather than Internet search tools.ConclusionsThe current state of health acquisition proves worrisome. The public has a high chance to access health information via WeChat. The growing popularity of interactive social platforms (e.g. WeChat) presents a variety of challenges and opportunities with respect to public health acquisition.
BackgroundWearable devices have the potential to promote a healthy lifestyle because of their real-time data monitoring capabilities. However, device usability is a critical factor that determines whether they will be adopted on a large scale. Usability studies on wearable devices are still scarce.ObjectiveThis study aims to compare the functions and attributes of seven mainstream wearable devices and to evaluate their usability.MethodsThe wearable devices selected were the Apple Watch, Samsung Gear S, Fitbit Surge, Jawbone Up3, Mi Band, Huawei Honor B2, and Misfit Shine. A mixed method of feature comparison and a System Usability Scale (SUS) evaluation based on 388 participants was applied; the higher the SUS score, the better the usability of the product.ResultsFor features, all devices had step counting, an activity timer, and distance recording functions. The Samsung Gear S had a unique sports track recording feature and the Huawei Honor B2 had a unique wireless earphone. The Apple Watch, Samsung Gear S, Jawbone Up3, and Fitbit Surge could measure heart rate. All the devices were able to monitor sleep, except the Apple Watch. For product characteristics, including attributes such as weight, battery life, price, and 22 functions such as step counting, activity time, activity type identification, sleep monitoring, and expandable new features, we found a very weak negative correlation between the SUS scores and price (r=−.10, P=.03) and devices that support expandable new features (r=−.11, P=.02), and a very weak positive correlation between the SUS scores and devices that support the activity type identification function (r=.11, P=.02). The Huawei Honor B2 received the highest score of mean 67.6 (SD 16.1); the lowest Apple Watch score was only 61.4 (SD 14.7). No significant difference was observed among brands. The SUS score had a moderate positive correlation with the user’s experience (length of time the device was used) (r=.32, P<.001); participants in the medical and health care industries gave a significantly higher score (mean 61.1, SD 17.9 vs mean 68.7, SD 14.5, P=.03).ConclusionsThe functions of wearable devices tend to be homogeneous and usability is similar across various brands. Overall, Mi Band had the lowest price and the lightest weight. Misfit Shine had the longest battery life and most functions, and participants in the medical and health care industries had the best evaluation of wearable devices. The perceived usability of mainstream wearable devices is unsatisfactory and customer loyalty is not high. A consumer’s SUS rating for a wearable device is related to their personal situation instead of the device brand. Device manufacturers should put more effort into developing innovative functions and improving the usability of their products by integrating more cognitive behavior change techniques.
Background Natural language processing (NLP) is an important traditional field in computer science, but its application in medical research has faced many challenges. With the extensive digitalization of medical information globally and increasing importance of understanding and mining big data in the medical field, NLP is becoming more crucial. Objective The goal of the research was to perform a systematic review on the use of NLP in medical research with the aim of understanding the global progress on NLP research outcomes, content, methods, and study groups involved. Methods A systematic review was conducted using the PubMed database as a search platform. All published studies on the application of NLP in medicine (except biomedicine) during the 20 years between 1999 and 2018 were retrieved. The data obtained from these published studies were cleaned and structured. Excel (Microsoft Corp) and VOSviewer (Nees Jan van Eck and Ludo Waltman) were used to perform bibliometric analysis of publication trends, author orders, countries, institutions, collaboration relationships, research hot spots, diseases studied, and research methods. Results A total of 3498 articles were obtained during initial screening, and 2336 articles were found to meet the study criteria after manual screening. The number of publications increased every year, with a significant growth after 2012 (number of publications ranged from 148 to a maximum of 302 annually). The United States has occupied the leading position since the inception of the field, with the largest number of articles published. The United States contributed to 63.01% (1472/2336) of all publications, followed by France (5.44%, 127/2336) and the United Kingdom (3.51%, 82/2336). The author with the largest number of articles published was Hongfang Liu (70), while Stéphane Meystre (17) and Hua Xu (33) published the largest number of articles as the first and corresponding authors. Among the first author’s affiliation institution, Columbia University published the largest number of articles, accounting for 4.54% (106/2336) of the total. Specifically, approximately one-fifth (17.68%, 413/2336) of the articles involved research on specific diseases, and the subject areas primarily focused on mental illness (16.46%, 68/413), breast cancer (5.81%, 24/413), and pneumonia (4.12%, 17/413). Conclusions NLP is in a period of robust development in the medical field, with an average of approximately 100 publications annually. Electronic medical records were the most used research materials, but social media such as Twitter have become important research materials since 2015. Cancer (24.94%, 103/413) was the most common subject area in NLP-assisted medical research on diseases, with breast cancers (23.30%, 24/103) and lung cancers (14.56%, 15/103) accounting for the highest proportions of studies. Columbia University and the talents trained therein were the most active and prolific research forces on NLP in the medical field.
With China's expanding import demand of crude oil and the gradually relaxing regulation of domestic oil prices, the global oil price is likely to affect China's price level more closely. Based on an augmented Phillips curve framework, this article employs both the autoregressive distribution lag (ARDL) and nonlinear and asymmetric autoregressive distribution lag (NARDL) model to investigate pass-through effects of crude oil price on China's producer prices index (PPI) and consumer prices index (CPI) in China. It is found that the impact of global oil price fluctuations to China's PPI and CPI are asymmetrical in the longrun, and the long-term impacts of the rise in global oil prices on PPI and CPI are greater than the global oil price decline on PPI and CPI. However, the symmetric ARDL model fails to diagnose the impact of oil price to China's PPI and CPI. Therefore, it is necessary to consider asymmetric relationship in the study of global oil price's influence on China's domestic prices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.