This article establishes an axial contact stiffness model of position preloaded ball screw mechanism based on Hertz contact theory. The analysis of dynamic axial contact stiffness is one of the foundations of the research on the dynamic characteristic of the ball screw feed drive system. The model takes into account the coupling relationship between the contact angle and the normal contact force, as well as the coupling relationship between the elastic deformation and the contact deformation coefficient. The static and dynamic axial contact stiffness characteristics of the preloaded ball screw mechanism are studied. The numerical analysis result shows that the static contact stiffness of the preloaded ball screw mechanism increases with the increase in the preload and decreases with the increase in the axial load. The dynamic contact stiffness of the preloaded ball screw mechanism increases with the increase in the screw's rotational speed. The variation range of dynamic contact stiffness increases with the increase in axial load under the same preload. And the variation range of dynamic contact stiffness decreases with the increase in preload under the same axial load. The axial contact stiffness model established in this article can be used to analyze either static or dynamic contact stiffness of position preloaded ball screw mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.