Aqueous hybrid Zn-based batteries (ZIBs), as a highly promising alternative to lithium-ion batteries for grid application, have made considerable progress recently. However, few studies have been reported that investigate their working mechanism in detail. Here, the operando synchrotron X-ray diffraction is employed to thoroughly investigate the operational mechanism of a hybrid LiFePO 4 (LFP)/Zn battery, which indicates only Li + extraction/insertion from/ into cathode during cycling. Based on this system, a cheap electrolyte additive, sodium dodecyl benzene sulfonate, is proposed to effectively enhance its electrochemical properties. The influence of the additive on the Zn anode and LFP cathode is comprehensively studied, respectively. The results show that the additive modifies the intrinsic deposit pattern of Zn 2+ ions, rendering Zn plating/stripping highly reversible in an aqueous medium. On the other hand, the wettability of the LFP electrode is visibly a meliorated by introducing the surfactant additive, accelerating the Li-ion diffusion at the LFP electrode/ electrolyte interface, as indicated by the overpotential measurements. Benefiting from these effects, the Zn/LFP batteries deliver high rate capability and cycling stability in both coin cells and pouch cells.
H2 evolution is the reason for poor reversibility and limited cycle stability with Zn‐metal anodes, and impedes practical application in aqueous zinc‐ion batteries (AZIBs). Here, using a combined gas chromatography experiment and computation, it is demonstrated that H2 evolution primarily originates from solvated water, rather than free water without interaction with Zn2+. Using linear sweep voltammetry (LSV) in salt electrolytes, H2 evolution is evidenced to occur at a more negative potential than zinc reduction because of the high overpotential against H2 evolution on Zn metal. The hypothesis is tested and, using a glycine additive to reduce solvated water, it is confirmed that H2 evolution and “parasitic” side reactions are suppressed on the Zn anode. This electrolyte additive is evidenced to suppress H2 evolution, reduce corrosion, and give a uniform Zn deposition in Zn|Zn and Zn|Cu cells. It is demonstrated that Zn|PANI (highly conductive polyaniline) full cells exhibit boosted electrochemical performance in 1 M ZnSO4–3 M glycine electrolyte. It is concluded that this new understanding of electrochemistry of H2 evolution can be used for design of relatively low‐cost and safe AZIBs for practical large‐scale energy storage.
Polypropylene (PP)/carbon nanotubes (CNTs) nanocomposites were prepared by coating CNTs on the surface of gelated/swollen soft PP pellets. The electrical conductivity (σ) studies revealed a percolation threshold of only 0.3 wt %, and the electrical conductivity mechanism followed a 3-d variable range hopping (VRH) behavior. At lower processing temperature, the CNTs formed the network structure more easily, resulting in a higher σ. The fraction of γ-phase PP increased with increasing the pressing temperature. The CNTs at lower loading (0.1 wt %) served as nucleating sites and promoted the crystallization of PP. The CNTs favored the disentanglement of polymer chains and thus caused an even lower melt viscosity of nanocomposites than that of pure PP. The calculated optical band gap of CNTs was observed to increase with increasing the processing temperature, i.e., 1.55 eV for nanocomposites prepared at 120 °C and 1.70 eV prepared at 160 and 180 °C. Both the Drude model and interband transition phenomenon have been used for theoretical analysis of the real permittivity of the nanocomposites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.