Aging is a multifactorial process that affects most of the biological functions of the organism and increases susceptibility to disease and death. Recent studies with animal models of accelerated aging have unveiled some mechanisms that also operate in physiological aging. However, little is known about the role of microRNAs (miRNAs) in this process. To address this question, we have analysed miRNA levels in Zmpste24-deficient mice, a model of Hutchinson-Gilford progeria syndrome. We have found that expression of the miR-29 family of miRNAs is markedly upregulated in Zmpste24 À/À progeroid mice as well as during normal aging in mouse. Functional analysis revealed that this transcriptional activation of miR-29 is triggered in response to DNA damage and occurs in a p53-dependent manner since p53 À/À murine fibroblasts do not increase miR-29 expression upon doxorubicin treatment. We have also found that miR-29 represses Ppm1d phosphatase, which in turn enhances p53 activity. Based on these results, we propose the existence of a novel regulatory circuitry involving miR-29, Ppm1d and p53, which is activated in aging and in response to DNA damage.
Targeting the αv integrin-TGF-β axis improves natural killer cell function against glioblastoma stem cells Running title-GBM induce NK cell dysfunction via integrin-TGF- axis
BackgroundSurvivin, a member of the family of inhibitor of apoptosis proteins, functions as a key regulator of mitosis and programmed cell death. YM155, a novel molecular targeted agent, suppresses survivin, which is overexpressed in many tumor types. The aim of this study was to determine the antitumor activity of YM155 in SK-NEP-1 cells.MethodsSK-NEP-1 cell growth in vitro and in vivo was assessed by MTT and nude mice experiments. Annexin V/propidium iodide staining followed by flow cytometric analysis was used to detect apoptosis in cell culture. Then gene expression profile of tumor cells treated with YM155 was analyzed with real-time PCR arrays. We then analyzed the expression data with MEV (Multi Experiment View) cluster software. Datasets representing genes with altered expression profile derived from cluster analyses were imported into the Ingenuity Pathway Analysis tool.ResultsYM155 treatment resulted in inhibition of cell proliferation of SK-NEP-1cells in a dose-dependent manner. Annexin V assay, cell cycle, and activation of caspase-3 demonstrates that YM155 induced apoptosis in SK-NEP-1 cells. YM155 significantly inhibited growth of SK-NEP-1 xenografts (YM155 5 mg/kg: 1.45 ± 0.77 cm3; YM155 10 mg/kg: 0.95 ± 0.55 cm3) compared to DMSO group (DMSO: 3.70 ± 2.4 cm3) or PBS group cells (PBS: 3.78 ± 2.20 cm3, ANOVA P < 0.01). YM155 treatment decreased weight of tumors (YM155 5 mg/kg: 1.05 ± 0.24 g; YM155 10 mg/kg: 0.72 ± 0.17 g) compared to DMSO group (DMSO: 2.06 ± 0.38 g) or PBS group cells (PBS: 2.36 ± 0.43 g, ANOVA P < 0.01). Real-time PCR array analysis showed between Test group and control group there are 32 genes significantly up-regulated and 54 genes were significantly down-regulated after YM155 treatment. Ingenuity pathway analysis (IPA) showed cell death was the highest rated network with 65 focus molecules and the significance score of 44. The IPA analysis also groups the differentially expressed genes into biological mechanisms that are related to cell death, cellular function maintenance, cell morphology, carbohydrate metabolism and cellular growth and proliferation. Death receptor signaling (3.87E-19), TNFR1 signaling, induction of apoptosis by HIV1, apoptosis signaling and molecular mechanisms of cancer came out to be the top four most significant pathways. IPA analysis also showed top molecules up-regulated were BBC3, BIRC3, BIRC8, BNIP1, CASP7, CASP9, CD5, CDKN1A, CEBPG and COL4A3, top molecules down-regulated were ZNF443, UTP11L, TP73, TNFSF10, TNFRSF1B, TNFRSF25, TIAF1, STK17A, SST and SPP1, upstream regulator were NR3C1, TP53, dexamethasone , TNF and Akt.ConclusionsThe present study demonstrates that YM155 treatment resulted in apoptosis and inhibition of cell proliferation of SK-NEP-1cells. YM155 had significant role and little side effect in the treatment of SK-NEP-1 xenograft tumors. Real-time PCR array analysis firstly showed expression profile of genes dyes-regulated after YM155 treatment. IPA analysis also represents new molecule mechanism of YM155 treatment, such as NR3C1 and dexa...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.