Rab3a, a small GTP-binding protein, is believed to mediate Ca2+-dependent exocytosis. Consistent with such a role was the previously reported specific association of Rab3a with synaptic vesicles in neurons and secretory granules in adrenal chromaffin cells. Secretory vesicles are believed to be the final point of Rab3a membrane association, as it was shown by several groups that Rab3a dissociates from the secretory vesicle membrane during stimulated exocytosis. In chromaffin cells, Rab3a is not exclusively localized on secretory granules since a fraction is present on a previously unidentified subcellular compartment equilibrating at light sucrose density. This ‘light’ membraneous structure could be the starting point for reassociation of Rab3a with membranes involved in granule formation, or it could be a structure unrelated to granules. The present study used several subcellular fractionation techniques and immunomicroscopy to unravel the nature of the ‘light’ Rab3a-containing structures from bovine chromaffin cells in primary culture. After stimulation, amounts of both Rab3a-d and the granule marker dopamine-beta-hydroxylase (DbetaH) increase transiently in sucrose gradient fractions enriched in endosomal markers. A diaminobenzidine-induced density shift of endosomes alters the distribution of DbetaH and Rab3a-d. At the ultrastructural level, subplasmalemmal pleiomorphic organelles were detected by Rab3a-d-immunogold labelling. Taken together our data provide for the first time evidence that internalised secretory granule membranes go through an endosomal stage where Rab3a is present, resembling the neuronal synaptic vesicle cycle. This indicates that the endosome is an important trafficking route in the biogenesis/recycling of secretory vesicles in chromaffin cells, in which Rab3a could have an as yet unknown regulatory function, and could point to the existence of alternative recycling pathways for the chromaffin granule membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.