Given e-commerce scenarios that user profiles are invisible, sessionbased recommendation is proposed to generate recommendation results from short sessions. Previous work only considers the user's sequential behavior in the current session, whereas the user's main purpose in the current session is not emphasized. In this paper, we propose a novel neural networks framework, i.e., Neural Attentive Recommendation Machine (NARM), to tackle this problem. Specifically, we explore a hybrid encoder with an attention mechanism to model the user's sequential behavior and capture the user's main purpose in the current session, which are combined as a unified session representation later. We then compute the recommendation scores for each candidate item with a bi-linear matching scheme based on this unified session representation. We train NARM by jointly learning the item and session representations as well as their matchings. We carried out extensive experiments on two benchmark datasets. Our experimental results show that NARM outperforms state-of-the-art baselines on both datasets. Furthermore, we also find that NARM achieves a significant improvement on long sessions, which demonstrates its advantages in modeling the user's sequential behavior and main purpose simultaneously.
Recurrent neural networks for session-based recommendation have attracted a lot of attention recently because of their promising performance. repeat consumption is a common phenomenon in many recommendation scenarios (e.g., e-commerce, music, and TV program recommendations), where the same item is re-consumed repeatedly over time. However, no previous studies have emphasized repeat consumption with neural networks. An effective neural approach is needed to decide when to perform repeat recommendation. In this paper, we incorporate a repeat-explore mechanism into neural networks and propose a new model, called RepeatNet, with an encoder-decoder structure. RepeatNet integrates a regular neural recommendation approach in the decoder with a new repeat recommendation mechanism that can choose items from a user's history and recommends them at the right time. We report on extensive experiments on three benchmark datasets. RepeatNet outperforms state-of-the-art baselines on all three datasets in terms of MRR and Recall. Furthermore, as the dataset size and the repeat ratio increase, the improvements of RepeatNet over the baselines also increase, which demonstrates its advantage in handling repeat recommendation scenarios.
Templates play a fundamental role in Computational Anatomy. In this paper, we present a Bayesian model for template estimation. It is assumed that observed images I(1), I(2),...,I(N) are generated by shooting the template J through Gaussian distributed random initial momenta theta(1), theta(2),...,theta(N). The template is J modeled as a deformation from a given hypertemplate J(0) with initial momentum mu, which has a Gaussian prior. We apply a mode approximation of the EM (MAEM) procedure, where the conditional expectation is replaced by a Dirac measure at the mode. This leads us to an image matching problem with a Jacobian weight term, and we solve it by deriving the weighted Euler-Lagrange equation. The results of template estimation for hippocampus and cardiac data are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.