We present and analyze kinematics and orbits for a sample of 488 open clusters in the Galaxy. The velocity ellipsoid for our present sample is derived as ($\sigma_{U}$, $\sigma_{V}$, $\sigma_{W})$=$(28.7$, 15.8, 11.0) km s$^{-1}$ which represents a young thin disc population. We also confirm that the velocity dispersions increase with the age of cluster subsample. The orbits of open clusters are calculated with three Galactic gravitational potential models. The errors of orbital parameters are also calculated considering the intrinsic variation of the orbital parameters and the effects of observational uncertainties. The observational uncertainties dominate the errors of derived orbital parameters. The vertical motions of clusters calculated using different Galactic disc models are rather different. The observed radial metallicity gradient of clusters is derived with a slope of $b=-0.070\pm0.011$ dex kpc$^{-1}$. The radial metallicity gradient of clusters based on their apogalactic distances is also derived with a slope of $b=-0.082\pm0.014$ dex kpc$^{-1}$. The distribution of derived orbital eccentricities for open clusters is very similar to the one derived for the field population of dwarfs and giants in the thin disc.Comment: Accepted for Publication in MNRAS, 25 pages, 14 figures, 6 table
In the Anthropocene, increasing pervasive plastic pollution is creating a new environmental compartment, the plastisphere. How the plastisphere affects microbial communities and antibiotic resistance genes (ARGs) is an issue of global concern. Although this has been studied in aquatic ecosystems, our understanding of plastisphere microbiota in soil ecosystems remains poor. Here, we investigated plastisphere microbiota and ARGs of four types of microplastics (MPs) from diverse soil environments, and revealed effects of manure, temperature, and moisture on them. Our results showed that the MPs select for microbial communities in the plastisphere, and that these plastisphere communities are involved in diverse metabolic pathways, indicating that they could drive diverse ecological processes in the soil ecosystem. The relationship within plastisphere bacterial zero-radius operational taxonomic units (zOTUs) was predominantly positive, and neutral processes appeared to dominate community assembly. However, deterministic processes were more important in explaining the variance in ARGs in plastispheres. A range of potential pathogens and ARGs were detected in the plastisphere, which were enriched compared to the soil but varied across MPs and soil types. We further found that the addition of manure and elevation of soil temperature and moisture all enhance ARGs in plastispheres, and potential pathogens increase with soil moisture. These results suggested that plastispheres are habitats in which an increased potential pathogen abundance is spatially co-located with an increased abundance of ARGs under global change. Our findings provided new insights into the community ecology of the microbiome and antibiotic resistome of the soil plastisphere.
The Beijing-Arizona Sky Survey (BASS) is a wide-field two-band photometric survey of the Northern Galactic Cap using the 90Prime imager on the 2.3 m Bok telescope at Kitt Peak. It is a four-year collaboration between the National Astronomical Observatory of China and Steward Observatory, the University of Arizona, serving as one of the three imaging surveys to provide photometric input catalogs for target selection of the Dark Energy Spectroscopic Instrument (DESI) project. BASS will take up to 240 dark/grey nights to cover an area of about 5400 deg 2 in the g and r bands. The 5σ limiting AB magnitudes for point sources in the two bands, corrected for the Galactic extinction, are 24.0 and 23.4 mag, respectively. BASS, together with other DESI imaging surveys, will provide unique science opportunities that cover a wide range of topics in both Galactic and extragalactic astronomy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.