Dynamic light scattering (DLS) and rheological measurements were performed on aqueous silk fibroin solutions extracted from the middle division of Bombyx mori silkworm over a wide range of polymer concentration C from 0.08 to 27.5 wt %. DLS results obtained in the dilute region of C less than 1 wt % are consistent with a model that an elementary unit is a large protein complex consisting of silk fibroin and P25 with a 6:1 molar ratio. Rheological measurements in the dilute C region reveal that those units (or clusters) with the hydrodynamic radius of about 100 nm form a network extending over the whole sample volume with small pseudoplateau modulus mainly by ionic bonding between COO(-) ions of the fibroin molecules and divalent metallic ions such as Ca(2+) or Mg(2+) ions present in the sample and also that, after a yield stress is reached, steady plastic flow is induced with viscosity much lower than the zero-shear viscosity estimated from creep and creep recovery measurements by 4-6 orders of magnitude. Angular frequency omega dependencies of the storage and the loss shear moduli, G'(omega) and G' '(omega), measured in the linear viscoelastic region, indicate that all solutions possess the pseudoplateau modulus in the low omega region and samples become highly viscoleastic for C greater, similar 4.2 wt %. Above C = 11.2 wt % another plateau appears at the high omega end accompanied by a distinct maximum of G' ' in the intermediate omega region. The relaxation motion with tau = 0.5 s corresponding to the maximum of G' ' is one of characteristic properties of the fibroin solutions in the high C region. Thermorheological behaviors of the solution with C = 27.5 wt % show that the network structure formed in the MM part of the silk gland is susceptible to temperature and a more stable homogeneous network is realized by raising the temperature up to T = 65 degrees C.
Silk fibroin films in the random‐coil and β‐form conformations were immersed in water at temperatures from 2 to 130°C, and conformational changes were followed by x‐ray diffraction, infrared spectroscopy and differential scanning calorimetry. On treatment with water below 60°C, the random‐coil conformation is converted to the α form and above 70°C to mixtures of the α and β conformations. The β‐form content increases as the immersion temperature is raised. The β form is not affected by immersion in water in the temperature range studied.
Silk fibroin-microcrystalline cellulose (cellulose whisker) composite films with varied compositions were prepared by casting mixed aqueous solution/suspensions of the two components. Silk fibroin was dissolved in 10M LiSCN followed by dialysis; a cellulose whisker suspension was prepared by sulfuric acid hydrolysis of tunicate cellulose. Macroscopically homogeneous films were obtained at all mixing ratios. While the Young's modulus of the composite films showed a linear, additive dependence on the mixing ratio, the tensile strength and ultimate strain showed a maximum at a 70 -80% cellulose content, reaching five times those of fibroin-alone or cellulose-alone films. At the same mixing ratio, infrared spectra of the composite films showed a shift of the amide I peak from 1654 to 1625 cm Ϫ1 , indicating the conformational change of fibroin from a random coil to a  structure (silk II) at the whisker-matrix interface. This change seems to be induced by contact of fibroin molecules with a highly ordered surface of cellulose whisker.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.