The mitogen-activated protein (MAP) kinase cascades play essential roles in a variety of cell processes by influencing transcriptional or translational regulation. ERKs play a central role in survival and mitogenic signaling, while JNKs and p38 MAP kinases are preferentially activated by environmental stresses and are actively involved in various stress responses including cell death, survival and differentiation. Apoptosis signal-regulating kinase 1 (ASK1)--a serine/threonine protein kinase--is a member of the MAPKKK family and activates both JNK and p38 pathways. It is well known that ASK1 is activated in cells treated with death receptor ligands and oxidant stress, such as that caused by hydrogen peroxide (H2O2). Moreover, recent studies have revealed new mechanisms by which ASK1 is activated in response to various types of extracellular and intracellular signals, such as endoplasmic reticulum (ER) stress, calcium signaling, and G-protein coupled receptor (GPCR) signaling. This review summarizes the regulatory mechanisms of ASK1 activity and the physiological roles of ASK1-mediated signal transduction.
Proton pump inhibitors (PPIs) are widely used in the treatment of acid-related diseases. However, several unmet medical needs, such as suppression of night-time acid secretion and rapid symptom relief, remain. In this study, we investigated the pharmacological effects of 1-[5-(2-fluorophenyl)-1-(pyridin-3-ylsulfonyl)-1H-pyrrol-3-yl]-N-methylmethanamine monofumarate (TAK-438), a novel potassium-competitive acid blocker (P-CAB), on gastric acid secretion in comparison with lansoprazole, a typical PPI, and SCH28080 [3-(cyanomethyl)-2-methyl,8-(phenylmethoxy)imidazo(1,2-a)pyridine], a prototype of P-CAB. TAK-438, SCH28080, and lansoprazole inhibited H ϩ ,K ϩ -ATPase activity in porcine gastric microsomes with IC 50 values of 0.019, 0.14, and 7.6 M, respectively, at pH 6.5. The inhibitory activity of TAK-438 was unaffected by ambient pH, whereas the inhibitory activities of SCH28080 and lansoprazole were weaker at pH 7.5. The inhibition by TAK-438 and SCH28080 was reversible and achieved in a K ϩ -competitive manner, quite different from that by lansoprazole. TAK-438, at a dose of 4 mg/kg (as the free base) orally, completely inhibited basal and 2-deoxy-D-glucose-stimulated gastric acid secretion in rats, and its effect on both was stronger than that of lansoprazole. TAK-438 increased the pH of gastric perfusate to a higher value than did lansoprazole or SCH28080, and the effect of TAK-438 was sustained longer than that of lansoprazole or SCH28080. These results indicate that TAK-438 exerts a more potent and longer-lasting inhibitory action on gastric acid secretion than either lansoprazole or SCH28080. TAK-438 is a novel antisecretory drug that may provide a new option for the patients with acid-related disease that is refractory to, or inadequately controlled by, treatment with PPIs.
Proton pump inhibitors (PPIs) are widely used for the treatment of acid-related diseases. However, several medical needs such as suppression of night-time acid secretion and rapid symptom relief remain unmet. In this study, we investigated the effects of 1-[5-(2-fluorophenyl)-1-(pyridin-3-ylsulfonyl)-1H-pyrrol-3-yl]-Nmethylmethanamine monofumarate (TAK-438), a novel potassium-competitive acid blocker, on acid secretion in rats and dogs under various conditions, in comparison with the PPI, to characterize the antisecretory action of TAK-438. TAK-438 showed a more potent and longer-lasting inhibitory effect than lansoprazole on the histamine-stimulated gastric acid secretion in rats and dogs. A pharmacokinetic study in rats showed that TAK-438 accumulated and was retained in the gastric tissue for more than 24 h, unlike that in the plasma. TAK-438 showed significant antisecretory activity with or without cimetidine pretreatment, in contrast to lansoprazole, which did not show antisecretory activity after cimetidine pretreatment in rats. TAK-438 increased the pH of the gastric perfusate to 5.7 in an unstimulated condition, and this effect was maintained in the presence of subsequent histamine stimulation. On the other hand, lansoprazole also increased the pH in an unstimulated condition, but this effect diminished after histamine stimulation. These results indicated that TAK-438 exerted a more potent and longer-lasting antisecretory effect than lansoprazole through high accumulation and slow clearance from the gastric tissue. In addition, TAK-438 was unaffected by the gastric secretory state, unlike PPIs. Therefore, TAK-438 can provide a novel mechanism of action to improve the present PPI-based treatment of acid-related diseases.
Acid-related diseases (ARDs), such as peptic ulcers and gastroesophageal reflux disease, represent a major health-care concern. Some major milestones in our understanding of gastric acid secretion and ARD treatment reached during the last 50years include 1) discovery of histamine H-receptors and development of H-receptor antagonists, 2) identification of H,K-ATPase as the parietal cell proton pump and development of proton pump inhibitors (PPIs), and 3) identification of Helicobacter pylori (H. pylori) as the major cause of peptic ulcers and development of effective eradication regimens. Although PPI treatments have been effective and successful, there are limitations to their efficacy and usage, i.e. short half-life, insufficient acid suppression, slow onset of action, and large variation in efficacy among patients due to CYP2C19 metabolism. Potassium-competitive acid blockers (P-CABs) inhibit H,K-ATPase in a reversible and K-competitive manner, and exhibit almost complete inhibition of gastric acid secretion from the first dose. Many pharmaceutical companies have tried to develop P-CABs, but most of their clinical development has been discontinued due to safety concerns or a similar efficacy to PPIs. Revaprazan was developed in Korea and was the first P-CAB approved for sale. Vonoprazan, approved in 2014 in Japan, has a completely different chemical structure and higher pKa value compared to other P-CABs, and exhibits rapid onset of action and prolonged control of intragastric acidity. Vonoprazan is an effective treatment for ARDs that is especially effective in healing reflux esophagitis and for H. pylori eradication. P-CABs, such as vonoprazan, promise to further improve the management of ARDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.