ORCID ID: 0000-0002-4645-3721 (J.M.)Plant circadian clocks that oscillate autonomously with a roughly 24-h period are entrained by fluctuating light and temperature and globally regulate downstream genes in the field. However, it remains unknown how punctual internal time produced by the circadian clock in the field is and how it is affected by environmental fluctuations due to weather or daylength. Using hundreds of samples of field-grown rice (Oryza sativa) leaves, we developed a statistical model for the expression of circadian clock-related genes integrating diurnally entrained circadian clock with phase setting by light, both responses to light and temperature gated by the circadian clock. We show that expression of individual genes was strongly affected by temperature. However, internal time estimated from expression of multiple genes, which may reflect transcriptional regulation of downstream genes, is punctual to 22 min and not affected by weather, daylength, or plant developmental age in the field. We also revealed perturbed progression of internal time under controlled environment or in a mutant of the circadian clock gene GIGANTEA. Thus, we demonstrated that the circadian clock is a regulatory network of multiple genes that retains accurate physical time of day by integrating the perturbations on individual genes under fluctuating environments in the field.
The orientation of woody stems that have finished elongation can be actively controlled by phototropism. Interspecific variation in phototropic responsiveness of trees is a possible significant determinant of interspecific variation in stem inclination on forest slopes.
Shoots grafted into the upper crowns of tall Japanese cedar (Cryptomeria japonica D. Don) show foliar gas exchange characteristics similar to those of intact shoots Abstract The lower foliar photosynthetic rates seen in shoots in the upper crowns of tall trees than those in seedlings could be caused by extrinsic factors, such as hydraulic conductance, for shoots or by irreversible intrinsic change in the meristems during tree development. To clarify which is most significant, we compared foliar gas exchange characteristics and water relations among scions of Japanese cedar (Cryptomeria japonica D. Don) grafted into the upper crowns of tall trees, rooted cuttings developed from scions of the same clones, and intact shoots in the upper crowns of the tall trees. Grafted shoots had the same water regime as intact shoots, as confirmed by their similar water potentials at the turgor loss point, which were more negative than those of the rooted cuttings. No significant difference was observed between the grafted and intact shoots in their light-saturated photosynthetic rate (P max ), stomatal conductance (g s ), photosynthetic capacity, carboxylation efficiency, ratio of intercellular to ambient CO 2 concentration (C i /C a ), and carbon isotope composition (δ 13 C). Compared with the rooted cuttings, the grafted shoots showed significantly lower P max , g s , photosynthetic capacity, and carboxylation efficiency (to 49%, 31%, 68%, and 65%, respectively). The C i /C a and δ 13 C indicated significantly stronger instantaneous and long-term stomatal limitation in the grafted shoots than in the rooted cuttings. These indicate that changes in extrinsic factors can reduce foliar photosynthetic rates in shoots in the upper crowns of tall trees as a result of stronger stomatal limitation and reduced photosynthetic activity, without irreversible intrinsic changes in the meristems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.