We clarified the critical amino acid residues of the oxygenase component (Oxy) of Rieske non-heme iron oxygenase (RO) for binding with Rieske-type ferredoxin (Fd). Our results showed that Rieske-type Fd-binding site is commonly located at the stem (side-wise site) of the mushroom-like α
3
β
3
quaternary structure in many ROs.
H-NS family proteins play key roles in bacterial nucleoid compaction and global transcription. MvaT homologues in Pseudomonas have almost negligible amino acid sequence identity with H-NS, but can complement an hns-related phenotype of Escherichia coli. Here, we report the crystal structure of the N-terminal dimerization/oligomerization domain of TurB, an MvaT homologue in Pseudomonas putida KT2440. Our data identify two dimerization sites; the structure of the central dimerization site is almost the same as the corresponding region of H-NS, whereas the terminal dimerization sites are different. Our results reveal similarities and differences in dimerization and oligomerization mechanisms between H-NS and TurB.
The initial reaction of bacterial carbazole degradation is catalysed by carbazole 1,9a-dioxygenase, which consists of terminal oxygenase, ferredoxin and ferredoxin reductase components. The reduced form of the terminal oxygenase component was crystallized at 293 K by the hanging-drop vapour-diffusion method using PEG MME 550 as the precipitant under anaerobic conditions. The crystals diffracted to a resolution of 1.74 Å and belonged to space group P6(5), with unit-cell parameters a = b = 92.0, c = 243.6 Å. The asymmetric unit contained a trimer of terminal oxygenase molecules.
Type II extradiol dioxygenase, 2'-carboxy-2,3-dihydroxybiphenyl 1,2-dioxygenase (FlnD1D2) involved in the fluorene degradation pathway of Rhodococcus sp. DFA3 was purified to homogeneity from a heterologously expressing Escherichia coli. Gel filtration chromatography and SDS-PAGE suggested that FlnD1D2 is an α4β4 heterooctamer and that the molecular masses of these subunits are 30 and 9.9 kDa, respectively. The optimum pH and temperature for enzyme activity were 8.0 and 30 °C, respectively. Assessment of metal ion effects suggested that exogenously supplied Fe(2+) increases enzyme activity 3.2-fold. FlnD1D2 catalyzed meta-cleavage of 2'-carboxy-2,3-dihydroxybiphenyl homologous compounds, but not single-ring catecholic compounds. The Km and kcat/Km values of FlnD1D2 for 2,3-dihidroxybiphenyl were 97.2 μM and 1.5 × 10(-2) μM(-1)sec(-1), and for 2,2',3-trihydroxybiphenyl, they were 168.0 μM and 0.5 × 10(-2) μM(-1)sec(-1), respectively. A phylogenetic tree of the large and small subunits of type II extradiol dioxygenases suggested that FlnD1D2 constitutes a novel subgroup among heterooligomeric type II extradiol dioxygenases.
The initial reaction in bacterial carbazole degradation is catalyzed by carbazole 1,9a-dioxygenase, which consists of terminal oxygenase (Oxy), ferredoxin (Fd) and ferredoxin reductase components. The electron-transfer complex between reduced Oxy and oxidized Fd was crystallized at 293 K using the hanging-drop vapour-diffusion method with PEG 3350 as the precipitant under anaerobic conditions. The crystal diffracted to a maximum resolution of 2.25 Å and belonged to space group P2 1 , with unit-cell parameters a = 97.3, b = 81.6, c = 116.2 Å , = = 90, = 100.1. The V M value is 2.85 Å 3 Da
À1, indicating a solvent content of 56.8%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.