MicroRNAs (miRNAs), a class of endogenous, tiny, non-coding RNAs, are master regulators of gene expression among most eukaryotes. Intracellular miRNA abundance is regulated under multiple levels of control including transcription, processing, RNA modification, RNA-induced silencing complex (RISC) assembly, miRNA-target interaction, and turnover. In this review, we summarize our current understanding of the molecular components and mechanisms that influence miRNA biogenesis, homeostasis, and degradation in plants. We also make comparisons with findings from other organisms where necessary.
Purpose: To evaluate the antibacterial effect of ethanol extract of Mentha arvensis against multi-drug resistant Acinetobacter baumannii using liquid chromatography-mass spectrometry (LC-ESI-MS
Summary
Mimicry target‐directed microRNA degradation is widespread and highly conserved among eukaryotes. However, little is known about its mechanism of action. In this letter, by using STTM160 (target mimic of miR160) as a reporter, we show that dysfunction of HAWAIIAN SKIRT (HWS) suppresses the pleiotropic phenotype of STTM160. Small RNA sequencing and Northern blot analyses suggested that HWS only affects a subset of microRNAs. Intriguingly, we identified a stable coexistence of miR160/miR399 and their mimicry targets within the AGO1 complex when HWS is compromised, pointing to a possible role of HWS in the clearance of RNA‐induced silencing complexes associated with mimicry target.
Bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most devastating diseases of rice. However, the molecular mechanism underpinning the Xoo resistance of rice is still not fully understood. Here, we report that a class II small heat shock protein gene, OsHsp18.0, whose expression was differentially induced between a resistant and a susceptible variety in response to Xoo infection, plays positive roles in both biotic and abiotic resistance. The molecular chaperone activity of OsHsp18.0 was confirmed by a bacterium-expressed glutathione S-transferase fusion protein. Overexpression of OsHsp18.0 in a susceptible rice variety significantly enhanced its resistance to multiple Xoo strains, whereas silencing of OsHsp18.0 in a resistant variety drastically increased its susceptibility. The enhanced Xoo resistance in OsHsp18.0-overexpressing lines was positively correlated with the sensitized salicylic acid-dependent defense responses. In addition to disease resistance, the OsHsp18.0 overexpressing and silencing lines exhibited enhanced and reduced tolerance, respectively, to heat and salt treatments. The subcellular localization study revealed that the green fluorescent protein-OsHsp18.0 was enriched on the nuclear envelope, suggesting a potential role of OsHsp18.0 in the nucleo-cytoplasmic trafficking. Together, our results reveal that the rice OsHsp18.0 is a positive regulator in both biotic and abiotic defense responses.
Cotton Verticillium wilt, caused by the notorious fungal phytopathogen Verticillium dahliae (V. dahliae), is a destructive soil-borne vascular disease and severely decreases cotton yield and quality worldwide. Transcriptional and post-transcriptional regulation of genes responsive to V. dahliae are crucial for V. dahliae tolerance in plants. However, the specific microRNAs (miRNAs) and the miRNA/target gene crosstalk involved in cotton resistance to Verticillium wilt remain largely limited. To investigate the roles of regulatory RNAs under V. dahliae induction in upland cotton, mRNA and small RNA libraries were constructed from mocked and infected roots of two upland cotton cultivars with the V. dahliae-sensitive cultivar “Jimian 11 (J11) and the V. dahliae-tolerant cultivar “Zhongzhimian 2 (Z2). A comparative transcriptome analysis revealed 8330 transcripts were differentially expressed under V. dahliae stress and associated with several specific biological processes. Moreover, small RNA sequencing identified a total of 383 miRNAs, including 330 unique conserved miRNAs and 53 novel miRNAs. Analysis of the regulatory network involved in the response to V. dahliae stress revealed 31 differentially expressed miRNA–mRNA pairs, and the up-regulation of GhmiR395 and down-regulation of GhmiR165 were possibly involved in the response to V. dahliae by regulating sulfur assimilation through the GhmiR395-APS1/3 module and the establishment of the vascular pattern and secondary cell wall formation through GhmiR165-REV module, respectively. The integrative analysis of mRNA and miRNA expression profiles from upland cotton lays the foundation for further investigation of regulatory mechanisms of resistance to Verticillium wilt in cotton and other crops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.