Superhydrophobic and transparent coatings are deposited onto paper by spraying alcohol suspensions of SiO(2) nanoparticles. Superhydrophobicity depends on the aggregation states of nanoparticles, which are determined by the type of alcohol used in the suspensions. The superhydrophobicity of the paper is maintained after touching the paper with a bare finger.
Superhydrophobic coatings were prepared by spraying a pigment nanoparticle suspension. By changing the type of pigment nanoparticles, the colors of the coating could be controlled. The particle size of the pigments, which determines the surface structure of the coatings, played an important role in exhibiting superhydrophobicity. The spray-coating process is applicable to a variety of materials (e.g., copper, glass, paper, coiled wire, and tied thread), and the superhydrophobicity was repairable.
Typical Li-rich layered oxides are widely regarded as promising cathode candidates for high-energy-density Li-ion batteries because of additional output capacities boosted by oxygen redox activities. However, its commercialized applications are hindered by serious capacity loss and voltage decay related to structural degradation upon cycling. Herein, a Co/Ni-free biphasic O2/O3-type layered cathode material is proposed, Li 0.9 [Li 0.3 Mn 0.7 ]O 2 , which has been successfully prepared by the Li + /Na + ion-exchange strategy and characterized by the XRD Rietveld refinement and SAED as well as HRTEM analyses. O2/O3-type layered cathode material with an approximate composition of 81% O2 and 19% O3 phases are confirmed. Furthermore, the biphasic cathode exhibits a high discharge capacity of 232 mAh g −1 with capacity retention of 88.1% after 500 cycles at a current density of 200 mA g −1 . That is, volume changes of the O3-type phase are effectively restricted during Li + (de)intercalations, further enhancing the structural stability and suppressing the formation of spinel phase due to the biphasic structural design. Altogether, these findings prove the biphasic structural design is a feasible strategy to achieve Li-rich cathode materials with high capacity and long-term cycle stability.
We demonstrated a fabrication of superhydrophobic colored films by the electrophoretic deposition (EPD) of hydrophobic pigment particles on substrates. The superhydrophobic films showed various colors such as black, white, blue, and green.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.