S-Adenosylmethionine-dependent methyltransferases are versatile tools for the specific alkylation of many compounds, such as pharmaceuticals, but their biocatalytic application is severely limited owing to the lack of a cofactor regeneration system. We report a biomimetic, polyphosphate-based, cyclic cascade for methyltransferases. In addition to the substrate to be methylated, only methionine and polyphosphate have to be added in stoichiometric amounts. The system acts catalytically with respect to the cofactor precursor adenosine in methylation and ethylation reactions of selected substrates, as shown by HPLC analysis. Furthermore, H and C NMR measurements were performed to unequivocally identify methionine as the methyl donor and to gain insight into the selectivity of the reactions. This system constitutes a vital stage in the development of economical and environmentally friendly applications of methyltransferases.
Adenosine-5'-triphosphate-dependent enzyme catalysed reactions are widespread in nature. Consequently, the enzymes involved have an intrinsic potential for use in syntheses of high value products. Although regeneration systems for ATP starting from adenosine-5'-diphosphate are available, certain limitations exist for both in vitro and in vivo applications requiring ATP regeneration from adenosine-5'-monophosphate, or adenosine. Following a short overview of the chemical and thermodynamic background, this Minireview focuses on emerging enzymes and methodologies for ATP regeneration. A large range of as yet unexploited reactions will be accessible with new, powerful, multistep ATP regeneration systems that use cheap phosphate donors and provide high longevity, compatibility, and robustness under process conditions. Their potential might go far beyond the direct use of ATP in enzymatic reactions; enzyme discovery, and engineering, as well as immobilisation strategies, will help to realise such systems.
Coenzyme A (CoA) is a common cofactor in biochemical reactions, and CoA‐dependent enzymes catalyze essential steps in anabolism and catabolism. This complex molecule also plays an important role in the synthesis of many high‐value products, such as synthetic antibiotics, vitamins, pheromones, and biopolymers. Nevertheless, the synthetic potential for biocatalytic processes cannot be fully exploited owing to the lack of an efficient regeneration system. Here, we report an acyl‐CoA regeneration system with integrated adenosine triphosphate (ATP) regeneration that is based on inexpensive polyphosphate as the single energy source. In the four‐enzyme cascade, two cofactors, acyl‐CoA and ATP, are each regenerated up to 2000 times. The applicability for different acyl donors and acceptors is shown by HPLC analysis. Owing to its flexibility toward virtually all relevant substrates, the system has the potential to make CoA‐dependent reactions more accessible for chemical synthesis in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.