The application of ketoreductase-based biocatalytic reduction to access optically pure Prelog or anti-Prelog alcohols offers a valuable approach for asymmetric synthesis. Despite this, control of the stereopreferences of ketoreductases as desired remains challenging, since natural ketoreductases usually display Prelog preference and it is difficult to transfer the knowledge from engineered anti-Prelog ketoreductases to the others. Here, we present the discovery of a switch between Prelog and anti-Prelog reduction toward halogen-substituted acetophenones in six short-chain dehydrogenase/reductases (SDRs). Through carefully analysis of the structural information and multiple-sequence alignment of several reported SDRs with Prelog or anti-Prelog stereopreference, the key residues that might control their stereopreferences were identified using Lactobacillus fermentum short-chain dehydrogenase/reductase 1 (LfSDR1) as the starting enzyme. Protein engineering at these positions of LfSDR1 could improve its anti-Prelog stereoselectivity or switch its stereopreference to Prelog. Moreover, the knowledge obtained from LfSDR1 could be further transferred to the five other SDRs (four mined SDRs and one reported SDR) that have 21−48% sequence identities with LfSDR1. The stereopreferences of these SDRs were able to be switched either from anti-Prelog to Prelog or from Prelog to anti-Prelog by mutagenesis at related positions. In addition, further optimization of LfSDR1 can access stereocomplementary reduction of several halogen-substituted acetophenones with high stereoselectivity (up to >99%), resulting in some valuable chiral alcohols for the synthesis of pharmaceutical agents.
Pickering interfacial
catalysis provides an excellent platform
for biphasic reactions, but the separation and recycling of nanocatalysts
is a challenge because of high adsorption energy of nanocatalysts
at the liquid–liquid interface. In this work, we represent
a new type of versatile Pickering emulsion based on magnetic and CO2-responsive nanohybrids Fe3O4@SiO2@P(TMA–DEA). The smart nanoparticles can stabilize
the water-in-oil Pickering emulsion in the biphasic system and achieve
the subsequent demulsification by bubbling CO2 ascribed
to their reversible switching surface. In the absence of energy barrier,
the nanohybrids can be easily captured in situ by magnetic field in
2 min and showed excellent recyclability. In the Anelli system for
alcohol oxidation, the nanocatalyst exhibited threefold enhancement
in catalytic efficiency in comparison with an unemulsified two-phase
and little loss on activity after five cycles. The conceptually novel
dual-responsive system offers a green and energy-saving strategy for
effective recycling of the nanocatalyst and intensification of biphasic
reaction.
We demonstrate the utility of cavity-enhanced Raman spectroscopy (CERS) as a unique multigas analysis tool for power transformer diagnosis. For this purpose, improvements have been added to our recently introduced CERS apparatus. Based on optical feedback frequency-locking, laser radiation is coupled into a high-finesse optical cavity, thus resulting in huge intracavity laser power. With 20 s exposure time, ppm-level gas sensing at 1 bar total pressure is achieved, including carbon dioxide (CO 2 ), carbon monoxide (CO), hydrogen (H 2 ), methane (CH 4 ), ethane (C 2 H 6 ), ethylene (C 2 H 4 ), acetylene (C 2 H 2 ), nitrogen (N 2 ), and oxygen (O 2 ). By using the internal standard gas (sulfur hexafluoride, SF 6 ), the quantification of multigas with high accuracy is also realized, which is confirmed by the measurement of calibration gases. For fault diagnosis, transformer oil is sampled from a 110 kV power transformer in service. Dissolved gases are extracted and analyzed by the CERS apparatus. Then the transformer is diagnosed according to the measurement results. CERS has the ability to analyze multigas with high selectivity, sensitivity, and accuracy, it has great potential in gas sensing fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.