The clinical use of doxorubicin for cancer therapy is limited by its cardiotoxicity, which involves cardiomyocyte apoptosis and oxidative stress. Previously, we showed that general control nonderepressible 2 (GCN2), an eukaryotic initiation factor 2α (eIF2α) kinase, impairs the ventricular adaptation to chronic pressure overload by affecting cardiomyocyte apoptosis. However, the impact of GCN2 on Dox-induced cardiotoxicity has not been investigated. In the present study, we treated wild type (WT) and Gcn2−/− mice with four intraperitoneal injections (5 mg/kg/week) to induce cardiomyopathy. After Dox treatment, Gcn2−/− mice developed less contractile dysfunction, myocardial fibrosis, apoptosis, and oxidative stress compared with WT mice. In the hearts of the Dox-treated mice, GCN2 deficiency attenuated eIF2α phosphorylation and induction of its downstream targets, activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP), and preserved the expression of anti-apoptotic factor Bcl-2 and mitochondrial uncoupling protein-2(UCP2). Furthermore, we found that GCN2 knockdown attenuated, whereas GCN2 overexpression exacerbated, Dox-induced cell death, oxidative stress and reduction of Bcl-2 and UCP2 expression through the eIF2α-CHOP-dependent pathway in H9C2 cells. Collectively, our data provide solid evidence that GCN2 has a marked effect on Dox induced myocardial apoptosis and oxidative stress. Our findings suggest that strategies to inhibit GCN2 activity in cardiomyocyte may provide a novel approach to attenuate Dox-related cardiotoxicity.
Fine particulate matter (PM2.5) airborne pollution increases the risk of respiratory and cardiovascular diseases. Although metformin is a well-known antidiabetic drug, it also confers protection against a series of diseases through the activation of AMP-activated protein kinase (AMPK). However, whether metformin affects PM2.5-induced adverse health effects has not been investigated. In this study, we exposed wild-type (WT) and AMPKα2−/− mice to PM2.5 every other day via intratracheal instillation for 4 weeks. After PM2.5 exposure, the AMPKα2−/− mice developed more severe lung injury and cardiac dysfunction than were developed in the WT mice; however the administration of metformin was effective in attenuating PM2.5-induced lung injury and cardiac dysfunction in both the WT and AMPKα2−/− mice. In the PM2.5-exposed mice, metformin treatment resulted in reduced systemic and pulmonary inflammation, preserved left ventricular ejection fraction, suppressed induction of pulmonary and myocardial fibrosis and oxidative stress, and increased levels of mitochondrial antioxidant enzymes. Moreover, pretreatment with metformin significantly attenuated PM2.5-induced cell death and oxidative stress in control and AMPKα2-depleted BEAS-2B and H9C2 cells, and was associated with preserved expression of mitochondrial antioxidant enzymes. These data support the notion that metformin protects against PM2.5-induced adverse health effects through a pathway that appears independent of AMPKα2. Our findings suggest that metformin may also be a novel drug for therapies that treat air pollution associated disease.
Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic lipid deposition and oxidative stress. It has been demonstrated that general control nonderepressible 2 (GCN2) is required to maintain hepatic fatty acid homeostasis under conditions of amino acid deprivation. However, the impact of GCN2 on the development of NAFLD has not been investigated. In this study, we used Gcn2 mice to investigate the effect of GCN2 on high fat diet (HFD)-induced hepatic steatosis. After HFD feeding for 12 weeks, Gcn2 mice were less obese than wild-type (WT) mice, and Gcn2 significantly attenuated HFD-induced liver dysfunction, hepatic steatosis and insulin resistance. In the livers of the HFD-fed mice, GCN2 deficiency resulted in higher levels of lipolysis genes, lower expression of genes related to FA synthesis, transport and lipogenesis, and less induction of oxidative stress. Furthermore, we found that knockdown of GCN2 attenuated, whereas overexpression of GCN2 exacerbated, palmitic acid-induced steatosis, oxidative & ER stress, and changes of peroxisome proliferator-activated receptor gamma (PPARγ), fatty acid synthase (FAS) and metallothionein (MT) expression in HepG2 cells. Collectively, our data provide evidences that GCN2 deficiency protects against HFD-induced hepatic steatosis by inhibiting lipogenesis and reducing oxidative stress. Our findings suggest that strategies to inhibit GCN2 activity in the liver may provide a novel approach to attenuate NAFLD development.
◥ T-cell acute lymphoblastic leukemia (T-ALL) is a type of aggressive leukemia with inferior prognosis. Although activating mutations of NOTCH1 are observed in most T-ALL cases, these mutations alone are not sufficient to drive the full development of T-ALL. b-Arrestins (ARRB) are versatile and multifunctional adapter proteins that regulate diverse cellular functions, including promoting the development of cancer. However, the role of ARRBs in T-ALL has largely remained elusive. In this study, we showed that ARRB1 is expressed at low levels in assayed T-ALL clinical samples and cell lines. Exogenous ARRB1 expression inhibited T-ALL proliferation and improved the survival of T-ALL xenograft animals. ARRB1 facilitated NOTCH1 ubiquitination and degradation through interactions with NOTCH1 and DTX1. Mechanistically, the oncogenic miRNA (oncomiR) miR-223 targets the 3 0 -UTR of ARRB1 (BUTR) and inhibits its expression in T-ALL. Furthermore, overexpression of the ARRB1-derived miR-223 sponge suppressed T-ALL cell proliferation and induced apoptosis. Collectively, these results demonstrate that ARRB1 acts as a tumor suppressor in T-ALL by promoting NOTCH1 degradation, which is inhibited by elevated miR-223, suggesting that ARRB1 may serve as a valid drug target in the development of novel T-ALL therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.