In Drosophila and other insects egg production is related to the nutrients available. Somehow the nutritional status of the environment is translated into hormonal signs that can be "read" by each individual egg chamber, influencing the decision to either develop into an egg or die. We have shown that BR-C is a control gene during oogenesis and that the differential expression of BR-C isoforms plays a key role in controlling whether the fate of the egg chamber is to develop or undergo apoptosis.
Drosophila egg production depends upon the nutritional available to females. When food is in short supply, oogenesis is arrested and apoptosis of the nurse cells is induced at mid-oogenesis via a mechanism that is probably controlled by ecdysteroid hormone. We have shown that expression of some ecdysone-response genes is correlated with apoptosis of egg chambers. Moreover, ecdysteroid injection and application of juvenile hormone induces and suppresses the apoptosis, respectively. In this study, we investigated which tissues show increases in the concentration of ecdysteroids under nutritional shortage to begin to link together nutrient intake, hormone regulation and the choice between egg development or apoptosis made within egg chambers. We measured ecdysteroid levels in the whole body, ovaries and haemolymph samples by RIA and found that the concentration of ecdysteroid increased in all samples. This contributes to the idea that nutritional shortage leads to a rapid high ecdysteroid concentration within the fly and that the high concentration induces apoptosis. Low concentrations of ecdysteroid are essential for normal oogenesis. We suggest there is threshold concentration in the egg chambers and that apoptosis at mid-oogenesis is induced when the ecdysteroid levels exceed the threshold. Starvation causes the ovary to retain the ecdysteroid it produces, thus enabling individual egg chambers to undergo apoptosis and thus control the number of eggs produced in relation to food intake.
Silk gland is a larval specific tissue of lepidopteran insects and begins to degenerate shortly before pupation. Programmed cell death (PCD) of the anterior silk gland of Bombyx mori last instar larvae was studied in vivo and in vitro, focusing on the effects of 20- hydroxyecdysone (20E). The glands began to exhibit signs of PCD in vivo 2 days after gut purge and completed PCD by 48 h. In vitro, 20E prematurely induced PCD, and its completion took 144 h (6 days). An oligo-nucleosomal ladder pattern was observed in DNA extracted at the end of PCD. Caspase 3 inhibitor inhibited attainment of full PCD, but it did not block chromatin condensation as revealed by acridine orange staining. alpha-Amanitin inhibited the PCD induced by 20E in vitro if added to the culture in the first 8 h. Similarly, cycloheximide and emetine completely blocked PCD when applied in the first 18 h of culture with 20E. These results indicate that 20E-stimulated transcription and protein synthesis for PCD are completed in 8 h and 18 h, respectively. Nevertheless, withdrawal of 20E from the medium at different times showed that 20E must be present in vitro for 42 h to elicit full PCD. Current results indicate that the effects of 20E on the progression of PCD are mediated by two distinct processes - one through nuclear hormone receptors, and the other independent from de novo gene expression.
BackgroundPregnane X receptor (PXR) is a key transcription factor that regulates drug metabolizing enzymes such as cytochrome P450 (CYP) 3A4, and plays important roles in intestinal first-pass metabolism. Although there is a large inter-individual heterogeneity with intestinal CYP3A4 expression and activity, the mechanism driving these differences is not sufficiently explained by genetic variability of PXR or CYP3A4. We examined whether epigenetic mechanisms are involved in the regulation of PXR/CYP3A4 pathways in colon cancer cells.MethodsmRNA levels of PXR, CYP3A4 and vitamin D receptor (VDR) were evaluated by quantitative real-time PCR on 6 colon cancer cell lines (Caco-2, HT29, HCT116, SW48, LS180, and LoVo). DNA methylation status was also examined by bisulfite sequencing of the 6 cell lines and 18 colorectal cancer tissue samples. DNA methylation was reversed by the treatment of these cell lines with 5-aza-2'-deoxycytidine (5-aza-dC).ResultsThe 6 colon cancer cell lines were classified into two groups (high or low expression cells) based on the basal level of PXR/CYP3A4 mRNA. DNA methylation of the CpG-rich sequence of the PXR promoter was more densely detected in the low expression cells (Caco-2, HT29, HCT116, and SW48) than in the high expression cells (LS180 and LoVo). This methylation was reversed by treatment with 5-aza-dC, in association with re-expression of PXR and CYP3A4 mRNA, but not VDR mRNA. Therefore, PXR transcription was silenced by promoter methylation in the low expression cells, which most likely led to downregulation of CYP3A4 transactivation. Moreover, a lower level of PXR promoter methylation was observed in colorectal cancer tissues compared with adjacent normal mucosa, suggesting upregulation of the PXR/CYP3A4 mRNAs during carcinogenesis.ConclusionsPXR promoter methylation is involved in the regulation of intestinal PXR and CYP3A4 mRNA expression and might be associated with the inter-individual variability of the drug responses of colon cancer cells.
The link between reproduction and environmental signals is poorly understood at the physiological, genetic and molecular levels. We describe a mutant strain of Drosophila virilis that has altered responses to heat stress. Heat stress in wild-type females results in oocyte maturation delays, degradation of early vitellogenic egg chambers, inhibition of yolk protein gene expression in follicle cells and accumulation of mature oocytes. The mutant females have increased levels of ecdysteroids and decreased juvenile hormone degradation, and show all of the heat-stress-induced reproductive effects observed in wild-type flies, without exposure to heat stress. During oogenesis in mutant females following heat stress there is an increase in early vitellogenic oocyte degradation and some degradation of late egg chambers. 20-Hydroxyecdysone levels, but not juvenile hormone degradation, change following heat stress in mutant females.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.