The Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect is a net torque caused by solar radiation directly reflected and thermally re-emitted from the surface of small asteroids and is considered to be crucial in their dynamical evolution. By long-term photometric observations of selected near-Earth asteroids, it’s hoped to enlarge asteroid samples with a detected YORP effect to facilitate the development of a theoretical framework. Archived light-curve data are collected and photometric observations are made for (1685) Toro and (85989) 1999 JD6, which enables measurement of their YORP effect by inverting the light curve to fit observations from a convex shape model. For (1685) Toro, a YORP acceleration υ = (3.2 ± 0.3) × 10-9 rad · d -2 (1σ error) is updated, which is consistent with previous YORP detection based on different light-curve data; for (85989) 1999 JD6, it is determined that the sidereal period is 7.667749 ± 0.000009 h, the rotation pole direction locates is at λ = 232±2°, β = −59±1°, the acceleration is detected to be υ = (2.4±0.3)×10-8 rad · d-2 (1σ error) and in addition to obtaining an excellent agreement between the observations and model. YORP should produce both spin-up and spin-down cases. However, including (85989) 1999 JD6, the dω/dt values of eleven near-Earth asteroids are positive totally, which suggests that there is either a bias in the sample of YORP detections or a real feature needs to be explained.
The heating mechanisms of solar white-light flares remain unclear. We present an X1.0 white-light flare on 2022 October 2 (SOL2022-10-02T20:25) observed by the Chinese Hα Solar Explorer that provides two-dimensional spectra in the visible light for the full solar disk with a seeing-free condition. The flare shows a prominent enhancement of ∼40% in the photospheric Fe i line at 6569.2 Å, and the nearby continuum also exhibits a maximum enhancement of ∼40%. For the continuum near the Fe i line at 6173 Å from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, it is enhanced up to ∼20%. At the white-light kernels, the Fe i line at 6569.2 Å has a symmetric Gaussian profile that is still in absorption and the Hα line at 6562.8 Å displays a very broad emission profile with a central reversal plus a red or blue asymmetry. The white-light kernels are cospatial with the microwave footpoint sources observed by the Expanded Owens Valley Solar Array and the time profile of the white-light emission matches that of the hard X-ray emission above 30 keV from the Gamma-ray Burst Monitor (GBM) on Fermi. These facts indicate that the white-light emission is qualitatively related to a nonthermal electron beam. We also perform a radiative hydrodynamic simulation with the electron-beam parameters constrained by the hard X-ray observations from Fermi/GBM. The result reveals that the white-light enhancement cannot be well explained by a pure electron-beam heating together with its induced radiative backwarming but may need additional heating sources such as Alfvén waves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.