We investigated the molecular mechanism by which troponin (Tn) regulates the Frank-Starling mechanism of the heart. Quasi-complete reconstitution of thin filaments with rabbit fast skeletal Tn (sTn) attenuated length-dependent activation in skinned porcine left ventricular muscle, to a magnitude similar to that observed in rabbit fast skeletal muscle. The rate of force redevelopment increased upon sTn reconstitution at submaximal levels, coupled with an increase in Ca2+ sensitivity of force, suggesting the acceleration of cross-bridge formation and, accordingly, a reduction in the fraction of resting cross-bridges that can potentially produce additional active force. An increase in titin-based passive force, induced by manipulating the prehistory of stretch, enhanced length-dependent activation, in both control and sTn-reconstituted muscles. Furthermore, reconstitution of rabbit fast skeletal muscle with porcine left ventricular Tn enhanced length-dependent activation, accompanied by a decrease in Ca2+ sensitivity of force. These findings demonstrate that Tn plays an important role in the Frank-Starling mechanism of the heart via on–off switching of the thin filament state, in concert with titin-based regulation.
Persistent muscle weakness due to disuse-associated skeletal muscle atrophy limits the quality of life for patients with various diseases and individuals who are confi ned to bed. Fibers from disused muscle exhibit a marked reduction in active force production, which can exacerbate motor function, coupled with the well-known loss of muscle quantity. Despite recent understanding of the signaling pathways leading to the quantity loss, the molecular mechanisms of the depressed qualitative performance still remain elusive. Here we show that long-term disuse causes preferential loss of the giant sarcomere protein titin, associated with changes in physiologic muscle function. Ca 2+ sensitivity of active force decreased following 6 wk of hindlimb immobilization in the soleus muscle of the rat, accompanied by a shift in the length-active force relationship to the shorter length side. Our analyses revealed marked changes in the disused sarcomere, with shortening of thick and thin fi laments responsible for altered length dependence and expansion of interfi lament lattice spacing leading to a reduction in Ca 2+ sensitivity. These results provide a novel view that disuse-induced preferential titin loss results in altered muscle function via abnormal sarcomeric organization.
Persistent muscle weakness due to disuse-associated skeletal muscle atrophy limits the quality of life for patients with various diseases and individuals who are confined to bed. Fibers from disused muscle exhibit a marked reduction in active force production, which can exacerbate motor function, coupled with the well-known loss of muscle quantity. Despite recent understanding of the signaling pathways leading to the quantity loss, the molecular mechanisms of the depressed qualitative performance still remain elusive. Here we show that long-term disuse causes preferential loss of the giant sarcomere protein titin, associated with changes in physiologic muscle function. Ca2+ sensitivity of active force decreased following 6 wk of hindlimb immobilization in the soleus muscle of the rat, accompanied by a shift in the length-active force relationship to the shorter length side. Our analyses revealed marked changes in the disused sarcomere, with shortening of thick and thin filaments responsible for altered length dependence and expansion of interfilament lattice spacing leading to a reduction in Ca2+ sensitivity. These results provide a novel view that disuse-induced preferential titin loss results in altered muscle function via abnormal sarcomeric organization.
Long-term disuse results in atrophy in skeletal muscle, which is characterized by reduced functional capability, impaired locomotor condition, and reduced resistance to fatigue. Here we show how long-term disuse affects contractility and fatigue resistance in single fibers of soleus muscle taken from the hindlimb immobilization model of the rat. We found that long-term disuse results in depression of caffeine-induced transient contractions in saponin-treated single fibers. However, when normalized to maximal Ca(2+)-activated force, the magnitude of the transient contractions became similar to that in control fibers. Control experiments indicated that the active force depression in disused muscle is not coupled with isoform switching of myosin heavy chain or troponin, or with disruptions of sarcomere structure or excessive internal sarcomere shortening during contraction. In contrast, our electronmicroscopic observation supported our earlier observation that interfilament lattice spacing is expanded after disuse. Then, to investigate the molecular mechanism of the reduced fatigue resistance in disused muscle, we compared the inhibitory effects of inorganic phosphate (Pi) on maximal Ca(2+)-activated force in control vs. disused fibers. The effect of Pi was more pronounced in disused fibers, and it approached that observed in control fibers after osmotic compression. These results suggest that contractile depression in disuse results from the lowering of myofibrillar force-generating capacity, rather than from defective Ca(2+) mobilization, and the reduced resistance to fatigue is from an enhanced inhibitory effect of Pi coupled with a decrease in the number of attached cross bridges, presumably due to lattice spacing expansion.
Background Sarcopenia is characterized by the loss of skeletal muscle mass and strength and is associated with poor prognosis in patients with chronic obstructive pulmonary disease (COPD). Cigarette smoke (CS) exposure, a major cause for COPD, induces mitochondrial damage, which has been implicated in sarcopenia pathogenesis. The current study sought to examine the involvement of insufficient Parkin-mediated mitophagy, a mitochondrion-selective autophagy, in the mechanisms by which dysfunctional mitochondria accumulate with excessive reactive oxygen species (ROS) production in the development of COPD-related sarcopenia. Methods The involvement of Parkin-mediated mitophagy was examined using in vitro models of myotube formation, in vivo CS-exposure model using Parkin À/À mice, and human muscle samples from patients with COPD-related sarcopenia. Results Cigarette smoke extract (CSE) induced myotube atrophy with concomitant 30% reduction in Parkin expression levels (P < 0.05). Parkin-mediated mitophagy regulated myotube atrophy by modulating mitochondrial damage and mitochondrial ROS production. Increased mitochondrial ROS was responsible for myotube atrophy by activating Muscle Ring Finger 1 (MuRF-1)-mediated myosin heavy chain (MHC) degradation. Parkin À/À mice with prolonged CS exposure showed enhanced limb muscle atrophy with a 31.7% reduction in limb muscle weights (P < 0.01) and 2.3 times greater MuRF-1 expression (P < 0.01) compared with wild-type mice with concomitant accumulation of damaged mitochondria and oxidative modifications in 4HNE expression. Patients with COPD-related sarcopenia exhibited significantly reduced Parkin but increased MuRF-1 protein levels (35% lower and 2.5 times greater protein levels compared with control patients, P < 0.01 and P < 0.05, respectively) and damaged mitochondria accumulation demonstrated in muscles. Electric pulse stimulation-induced muscle contraction prevented CSE-induced MHC reduction by maintaining Parkin levels in myotubes. Conclusions Taken together, COPD-related sarcopenia can be attributed to insufficient Parkin-mediated mitophagy and increased mitochondrial ROS causing enhanced muscle atrophy through MuRF-1 activation, which may be at least partly preventable through optimal physical exercise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.