Small-cell lung cancer (SCLC) is an aggressive form of lung cancer with dismal survival rates. While kinases often play key roles driving tumorigenesis, there are strikingly few kinases known to promote the development of SCLC. Here, we investigated the contribution of the MAPK module MEK5-ERK5 to SCLC growth. MEK5 and ERK5 were required for optimal survival and expansion of SCLC cell lines in vitro and in vivo. Transcriptomics analyses identified a role for the MEK5-ERK5 axis in the metabolism of SCLC cells, including lipid metabolism. In-depth lipidomics analyses showed that loss of MEK5/ERK5 perturbs several lipid metabolism pathways, including the mevalonate pathway that controls cholesterol synthesis. Notably, depletion of MEK5/ERK5 sensitized SCLC cells to pharmacologic inhibition of the mevalonate pathway by statins. These data identify a new MEK5-ERK5-lipid metabolism axis that promotes the growth of SCLC. Significance: This study is the first to investigate MEK5 and ERK5 in SCLC, linking the activity of these two kinases to the control of cell survival and lipid metabolism.
Molecules that target and inhibit
αvβ3, αvβ5, and α5β1 integrins have
generated great interest
because of the role of these receptors in mediating angiogenesis and
metastasis. Attempts to increase the binding affinity and hence the
efficacy of integrin inhibitors by dimerization have been marginally
effective. In the present work, we achieved this goal by using oxime-based
chemical conjugation to synthesize dimers of integrin-binding cystine
knot (knottin) miniproteins with low-picomolar binding affinity to
tumor cells. A non-natural amino acid containing an aminooxy side
chain was introduced at different locations within a knottin monomer
and reacted with dialdehyde-containing cross-linkers of different
lengths to create knottin dimers with varying molecular topologies.
Dimers cross-linked through an aminooxy functional group located near
the middle of the protein exhibited higher apparent binding affinity
to integrin-expressing tumor cells compared with dimers cross-linked
through an aminooxy group near the C-terminus. In contrast, the cross-linker
length had no effect on the integrin binding affinity. A chemical-based
dimerization strategy was critical, as knottin dimers created through
genetic fusion to a bivalent antibody domain exhibited only modest
improvement (less than 5-fold) in tumor cell binding relative to the
knottin monomer. The best oxime-conjugated knottin dimer achieved
an unprecedented 150-fold increase in apparent binding affinity over
the knottin monomer. Also, this dimer bound 3650-fold stronger and
inhibited tumor cell migration and proliferation compared with cilengitide,
an integrin-targeting peptidomimetic that performed poorly in recent
clinical trials, suggesting promise for further therapeutic development.
Interleukin-6 (IL-6) family cytokines signal through multimeric receptor complexes, providing unique opportunities to create novel ligand-based therapeutics. The cardiotrophin-like cytokine factor 1 (CLCF1) ligand has been shown to play a role in cancer, osteoporosis, and atherosclerosis. Once bound to ciliary neurotrophic factor receptor (CNTFR), CLCF1 mediates interactions to coreceptors glycoprotein 130 (gp130) and leukemia inhibitory factor receptor (LIFR). By increasing CNTFR-mediated binding to these coreceptors we generated a receptor superagonist which surpassed the potency of natural CNTFR ligands in neuronal signaling. Through additional mutations, we generated a receptor antagonist with increased binding to CNTFR but lack of binding to the coreceptors that inhibited tumor progression in murine xenograft models of nonsmall cell lung cancer. These studies further validate the CLCF1–CNTFR signaling axis as a therapeutic target and highlight an approach of engineering cytokine activity through a small number of mutations.
Previous sport management research has demonstrated the positive relationship between political skill and personal career outcomes, but research addressing the question of how leader social effectiveness (i.e. political skill) influences the commitment and satisfaction of subordinates is lacking. This study sought to determine if leader (athletic director) political skill influences subordinate (head coach) evaluations of leader effectiveness, in turn influencing subordinate job satisfaction and commitment. Surveys were completed by interscholastic athletic directors ( n = 250) and representative subsets of head coaches ( n = 806) in the United States. Structural equation modeling was used to analyze the data. Political skill was shown to have a positive impact on evaluations of leader effectiveness. Leader effectiveness also acts as a mediator between political skill and employee job satisfaction and affective organizational commitment. Thus, political skill appears to be an important contributor to subordinate perceptions of leadership effectiveness, job satisfaction, and organizational commitment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.