The Ugi reaction constructs α-acylaminoamide compounds by combining an aldehyde or ketone, an amine, a carboxylic acid, and an isocyanide in a single flask. Its appealing features include inherent atom and step economy together with the potential to generate products of broad structural diversity. However, control of the stereochemistry in this reaction has proven to be a formidable challenge. We describe an efficient enantioselective four-component Ugi reaction catalyzed by a chiral phosphoric acid derivative that delivers more than 80 α-acylaminoamides in good to excellent enantiomeric excess. Experimental and computational studies establish the reaction mechanism and origins of stereoselectivity.
The catalytic cross-dehydrogenative coupling (CDC) reaction has received intense attention in recent years. The attractive feature of this coupling process is the formation of a C-C bond from two C-H moieties under oxidative conditions. In this Focus Review, recent advances in the palladium-catalyzed CDC reactions of C(sp(2) )-H bond are summarized, with a focus on the period from 2011 to early 2013.
Axially chiral arylpyrroles are key components of pharmaceuticals and natural products as well as chiral catalysts and ligands for asymmetric transformations. However, the catalytic enantioselective construction of optically active arylpyrroles remains a formidable challenge. Here we disclose a highly efficient strategy to access enantioenriched axially chiral arylpyrroles by means of organocatalytic atroposelective desymmetrization and kinetic resolution. Depending on the remote control of chiral catalyst, the arylpyrroles were obtained in high yields and excellent enantioselectivities under mild reaction conditions. This strategy tolerates a wide range of functional groups, providing a facile avenue to approach axially chiral arylpyrroles from simple and readily available starting materials. Selected arylpyrrole products proved to be efficient chiral ligands in asymmetric catalysis and also important precursors for further synthetic transformations into highly functionalized pyrroles with potential bioactivity, especially the axially chiral fully substituted arylpyrroles.
A catalytic enantioselective synthesis of P-stereogenic alkenylphosphinates is developed through asymmetric hydrophosphorylation. This process is demonstrated on racemic phosphinates and leads to diverse P-stereogenic alkenylphosphinates directly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.