Since the last decade, several complex-valued neural networks have been developed and applied in various research areas. As an extension of real-valued recurrent neural networks, complex-valued recurrent neural networks use complex-valued states, connection weights, or activation functions with much more complicated properties than real-valued ones. This paper presents several sufficient conditions derived to ascertain the existence of unique equilibrium, global asymptotic stability, and global exponential stability of delayed complex-valued recurrent neural networks with two classes of complex-valued activation functions. Simulation results of three numerical examples are also delineated to substantiate the effectiveness of the theoretical results.
One important issue in the motion planning and control of kinematically redundant manipulators is the obstacle avoidance. In this paper, a recurrent neural network is developed and applied for kinematic control of redundant manipulators with obstacle avoidance capability. An improved problem formulation is proposed in the sense that the collision-avoidance requirement is represented by dynamically-updated inequality constraints. In addition, physical constraints such as joint physical limits are also incorporated directly into the formulation. Based on the improved problem formulation, a dual neural network is developed for the online solution to collision-free inverse kinematics problem. The neural network is simulated for motion control of the PA10 robot arm in the presence of point and window-shaped obstacle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.