Single-layer black phosphorus (BP), or phosphorene, is a highly anisotropic two-dimensional elemental material possessing promising semiconductor properties for flexible electronics. However, the direct bandgap of single-layer black phosphorus predicted theoretically has not been directly measured, and the properties of its edges have not been considered in detail. Here we report atomic scale electronic variation related to strain-induced anisotropic deformation of the puckered honeycomb structure of freshly cleaved black phosphorus using a high-resolution scanning tunneling spectroscopy (STS) survey along the light (x) and heavy (y) effective mass directions. Through a combination of STS measurements and first-principles calculations, a model for edge reconstruction is also determined. The reconstruction is shown to self-passivate most dangling bonds by switching the coordination number of phosphorus from 3 to 5 or 3 to 4.
Two-dimensional (2D) Ruddlesden–Popper perovskites have attracted great interest for their promising applications in high-performance optoelectronic devices owing to their greatly tunable band gaps, layered characteristics, and better environmental stability over three-dimensional (3D) perovskites. Here, we for the first time report on photodetectors based on few-layer MoS2 (n-type) and lead-free 2D perovskite (PEA)2SnI4 (p-type) heterostructures. The heterojunction device is capable of sensing light over the entire visible and near-infrared wavelength range with a tunable photoresponse peak. By using few-layer graphene flakes as the electrical contact, the performance of the heterostructures can be improved with a responsivity of 1100 A/W at 3 V bias, a fast response speed of ∼40 ms under zero bias, and an excellent rectification ratio of 500. Importantly, the quantum efficiency can achieve 38.2% at zero bias, which is comparable or even higher than that of 3D perovskite/2D material photodetectors. Importantly, the spectral response peak of heterojunctions gradually shifts in a wide spectral range from the band edge of MoS2 toward that of (PEA)2SnI4 with the external bias. We believe these 2D perovskite/2D material heterostructures with a great diversity represent an interesting system for investigating the fundamental optoelectronic properties and open up a new pathway toward 2D perovskite-based optoelectronic devices.
We report experimental as well as theoretical evidence that suggests Au-CO complex formation upon the exposure of CO to active sites (step edges and threading dislocations) on a Au(111) surface. Room-temperature scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy, transmission infrared spectroscopy, and density functional theory calculations point to Au-CO complex formation and migration. Room-temperature STM of the Au(111) surface at CO pressures in the range from 10(-8) to 10(-4) Torr (dosage up to 10(6) langmuir) indicates Au atom extraction from dislocation sites of the herringbone reconstruction, mobile Au-CO complex formation and diffusion, and Au adatom cluster formation on both elbows and step edges on the Au surface. The formation and mobility of the Au-CO complex result from the reduced Au-Au bonding at elbows and step edges leading to stronger Au-CO bonding and to the formation of a more positively charged CO (CO(δ+)) on Au. Our studies indicate that the mobile Au-CO complex is involved in the Au nanoparticle formation and reactivity, and that the positive charge on CO increases due to the stronger adsorption of CO at Au sites with lower coordination numbers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.